1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
#pragma once
/**
* \file NETGeographicLib/Rhumb.h
* \brief Header for NETGeographicLib::Rhumb and NETGeographicLib::RhumbLine classes
*
* NETGeographicLib is copyright (c) Scott Heiman (2013)
* GeographicLib is Copyright (c) Charles Karney (2010-2012)
* <charles@karney.com> and licensed under the MIT/X11 License.
* For more information, see
* http://geographiclib.sourceforge.net/
**********************************************************************/
namespace NETGeographicLib {
ref class RhumbLine;
/**
* \brief .NET wrapper for GeographicLib::Rhumb.
*
* This class allows .NET applications to access GeographicLib::Rhumb.
*
* Solve of the direct and inverse rhumb problems.
*
* The path of constant azimuth between two points on a ellipsoid at (\e
* lat1, \e lon1) and (\e lat2, \e lon2) is called the rhumb line (also
* called the loxodrome). Its length is \e s12 and its azimuth is \e azi12
* and \e azi2. (The azimuth is the heading measured clockwise from north.)
*
* Given \e lat1, \e lon1, \e azi12, and \e s12, we can determine \e lat2,
* and \e lon2. This is the \e direct rhumb problem and its solution is
* given by the function Rhumb::Direct.
*
* Given \e lat1, \e lon1, \e lat2, and \e lon2, we can determine \e azi12
* and \e s12. This is the \e inverse rhumb problem, whose solution is
* given by Rhumb::Inverse. This finds the shortest such rhumb line, i.e.,
* the one that wraps no more than half way around the earth .
*
* Note that rhumb lines may be appreciably longer (up to 50%) than the
* corresponding Geodesic. For example the distance between London Heathrow
* and Tokyo Narita via the rhumb line is 11400 km which is 18% longer than
* the geodesic distance 9600 km.
*
* For more information on rhumb lines see \ref rhumb.
*
* C# Example:
* \include example-Rhumb.cs
* Managed C++ Example:
* \include example-Rhumb.cpp
* Visual Basic Example:
* \include example-Rhumb.vb
*
* <B>INTERFACE DIFFERENCES:</B><BR>
* The MajorRadius and Flattening functions are implemented as properties.
**********************************************************************/
public ref class Rhumb {
private:
// pointer to the unmanaged Rhumb object
GeographicLib::Rhumb* m_pRhumb;
// The finalizer destroys m_pRhumb when this object is destroyed.
!Rhumb(void);
public:
/**
* Constructor for a ellipsoid with
*
* @param[in] a equatorial radius (meters).
* @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
* Negative \e f gives a prolate ellipsoid. If \e f > 1, set
* flattening to 1/\e f.
* @param[in] exact if true (the default) use an addition theorem for
* elliptic integrals to compute divided differences; otherwise use
* series expansion (accurate for |<i>f</i>| < 0.01).
* @exception GeographicErr if \e a or (1 − \e f) \e a is not
* positive.
*
* See \ref rhumb, for a detailed description of the \e exact parameter.
**********************************************************************/
Rhumb(double a, double f, bool exact);
/**
* \brief The destructor calls the finalizer.
**********************************************************************/
~Rhumb() { this->!Rhumb(); }
/**
* Solve the direct rhumb problem.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi12 azimuth of the rhumb line (degrees).
* @param[in] s12 distance between point 1 and point 2 (meters); it can be
* negative.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees).
*
* \e lat1 should be in the range [−90°, 90°]; \e lon1 and \e
* azi1 should be in the range [−540°, 540°). The values of
* \e lon2 and \e azi2 returned are in the range [−180°,
* 180°).
*
* If point 1 is a pole, the cosine of its latitude is taken to be
* 1/ε<sup>2</sup> (where ε is 2<sup>-52</sup>). This
* position, which is extremely close to the actual pole, allows the
* calculation to be carried out in finite terms. If \e s12 is large
* enough that the rhumb line crosses a pole, the longitude of point 2
* is indeterminate (a NaN is returned for \e lon2).
**********************************************************************/
void Direct(double lat1, double lon1, double azi12, double s12,
[System::Runtime::InteropServices::Out] double% lat2,
[System::Runtime::InteropServices::Out] double% lon2);
/**
* Solve the inverse rhumb problem.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] lat2 latitude of point 2 (degrees).
* @param[in] lon2 longitude of point 2 (degrees).
* @param[out] s12 rhumb distance between point 1 and point 2 (meters).
* @param[out] azi12 azimuth of the rhumb line (degrees).
*
* The shortest rhumb line is found. \e lat1 and \e lat2 should be in the
* range [−90°, 90°]; \e lon1 and \e lon2 should be in the
* range [−540°, 540°). The value of \e azi12 returned is in
* the range [−180°, 180°).
*
* If either point is a pole, the cosine of its latitude is taken to be
* 1/ε<sup>2</sup> (where ε is 2<sup>-52</sup>). This
* position, which is extremely close to the actual pole, allows the
* calculation to be carried out in finite terms.
**********************************************************************/
void Inverse(double lat1, double lon1, double lat2, double lon2,
[System::Runtime::InteropServices::Out] double% s12,
[System::Runtime::InteropServices::Out] double% azi12);
/**
* Set up to compute several points on a single rhumb line.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi12 azimuth of the rhumb line (degrees).
* @return a RhumbLine object.
*
* \e lat1 should be in the range [−90°, 90°]; \e lon1 and \e
* azi12 should be in the range [−540°, 540°).
*
* If point 1 is a pole, the cosine of its latitude is taken to be
* 1/ε<sup>2</sup> (where ε is 2<sup>-52</sup>). This
* position, which is extremely close to the actual pole, allows the
* calculation to be carried out in finite terms.
**********************************************************************/
RhumbLine^ Line(double lat1, double lon1, double azi12);
/** \name Inspector functions.
**********************************************************************/
///@{
/**
* @return the equatorial radius of the ellipsoid (meters). This is
* the value used in the constructor.
**********************************************************************/
property double MajorRadius { double get(); }
/**
* @return f the flattening of the ellipsoid. This is the
* value used in the constructor.
**********************************************************************/
property double Flattening { double get(); }
/**
* A global instantiation of Rhumb with the parameters for the WGS84
* ellipsoid.
**********************************************************************/
static Rhumb^ WGS84();
};
/**
* \brief .NET wrapper for GeographicLib::RhumbLine.
*
* This class allows .NET applications to access GeographicLib::RhumbLine.
*
* Find a sequence of points on a single rhumb line.
*
* RhumbLine facilitates the determination of a series of points on a single
* rhumb line. The starting point (\e lat1, \e lon1) and the azimuth \e
* azi12 are specified in the call to Rhumb::Line which returns a RhumbLine
* object. RhumbLine.Position returns the location of point 2 a distance \e
* s12 along the rhumb line.
* There is no public constructor for this class. (Use Rhumb::Line to create
* an instance.) The Rhumb object used to create a RhumbLine must stay in
* scope as long as the RhumbLine.
*
**********************************************************************/
public ref class RhumbLine {
private:
// pointer to the unmanaged RhumbLine object.
GeographicLib::RhumbLine* m_pRhumbLine;
// The finalizer destroys m_pRhumbLine when this object is destroyed.
!RhumbLine(void);
public:
/**
* \brief Constructor.
*
* For internal use only. Developers should not call this constructor
* directly. Use the Rhumb::Line function to create RhumbLine objects.
**********************************************************************/
RhumbLine( GeographicLib::RhumbLine* pRhumbLine );
/**
* \brief The destructor calls the finalizer.
**********************************************************************/
~RhumbLine() { this->!RhumbLine(); }
/**
* Compute the position of point 2 which is a distance \e s12 (meters) from
* point 1.
*
* @param[in] s12 distance between point 1 and point 2 (meters); it can be
* negative.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees).
*
* The values of \e lon2 and \e azi2 returned are in the range
* [−180°, 180°).
*
* If \e s12 is large enough that the rhumb line crosses a pole, the
* longitude of point 2 is indeterminate (a NaN is returned for \e lon2).
**********************************************************************/
void Position(double s12,
[System::Runtime::InteropServices::Out] double% lat2,
[System::Runtime::InteropServices::Out] double% lon2);
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return the latitude of point 1 (degrees).
**********************************************************************/
property double Latitude { double get(); }
/**
* @return the longitude of point 1 (degrees).
**********************************************************************/
property double Longitude { double get(); }
/**
* @return the azimuth of the rhumb line (degrees).
**********************************************************************/
property double Azimuth { double get(); }
/**
* @return the equatorial radius of the ellipsoid (meters). This is
* the value inherited from the Rhumb object used in the constructor.
**********************************************************************/
property double MajorRadius { double get(); }
/**
* @return the flattening of the ellipsoid. This is the value
* inherited from the Rhumb object used in the constructor.
**********************************************************************/
property double Flattening { double get(); }
};
} // namespace NETGeographicLib
|