1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
|
// Example of using the GeographicLib::GeodesicLineExact class
#include <iostream>
#include <exception>
#include <cmath>
#include <iomanip>
#include <GeographicLib/GeodesicExact.hpp>
#include <GeographicLib/GeodesicLineExact.hpp>
#include <GeographicLib/Constants.hpp>
using namespace std;
using namespace GeographicLib;
int main() {
try {
// Print waypoints between JFK and SIN
GeodesicExact geod(Constants::WGS84_a(), Constants::WGS84_f());
// Alternatively: const GeodesicExact& geod = GeodesicExact::WGS84();
double
lat1 = 40.640, lon1 = -73.779, // JFK
lat2 = 1.359, lon2 = 103.989; // SIN
double s12, azi1, azi2,
a12 = geod.Inverse(lat1, lon1, lat2, lon2, s12, azi1, azi2);
const GeographicLib::GeodesicLineExact line(geod, lat1, lon1, azi1);
// Alternatively
// const GeographicLib::GeodesicLineExact line = geod.Line(lat1,lon1,azi1);
double ds = 500e3; // Nominal distance between points = 500 km
int num = int(ceil(s12 / ds)); // The number of intervals
cout << fixed << setprecision(3);
{
// Use intervals of equal length
double ds = s12 / num;
for (int i = 0; i <= num; ++i) {
double lat, lon;
line.Position(i * ds, lat, lon);
cout << i << " " << lat << " " << lon << "\n";
}
}
{
// Slightly faster, use intervals of equal arc length
double da = a12 / num;
for (int i = 0; i <= num; ++i) {
double lat, lon;
line.ArcPosition(i * da, lat, lon);
cout << i << " " << lat << " " << lon << "\n";
}
}
}
catch (const exception& e) {
cerr << "Caught exception: " << e.what() << "\n";
return 1;
}
return 0;
}
|