1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
/*
Arbitrary precision Transverse Mercator Projection
Copyright (c) Charles Karney (2009-2010) <charles@karney.com> and
licensed under the MIT/X11 License. For more information, see
http://geographiclib.sourceforge.net/
Reference:
Charles F. F. Karney,
Transverse Mercator with an accuracy of a few nanometers,
J. Geodesy 85(8), 475-485 (Aug. 2011).
DOI 10.1007/s00190-011-0445-3
preprint http://arxiv.org/abs/1002.1417
resource page http://geographiclib.sf.net/tm.html
The parameters for the transformation are set by
setparams(a,invf,k0)$
sets the major radius, inverse flattening, and central scale
factor. The default is
setparams(6378137b0, 298.257223563b0, 0.9996b0)$
appropriate for UTM applications.
tm(lat,lon);
takes lat and lon args (in degrees) and returns
[x, y, convergence, scale]
[x, y] do not include false eastings/northings but do include the
scale factor k0. convergence is in degrees.
ll(x,y);
takes x and y args (in meters) and returns
[lat, lon, convergence, scale].
Example:
$ maxima
Maxima 5.15.0 http://maxima.sourceforge.net
Using Lisp CLISP 2.43 (2007-11-18)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
(%i1) load("tm.mac")$
(%i2) tm(10b0,20b0);
(%o2) [2.235209504622466691587930831718465965864199221939781808953597771095103\
6690000464b6, 1.17529734503138466792126931904154130080533935727351398258511134\
68541970512119385b6, 3.6194756227592979778565787394402350354250845160819430786\
093514889500602612857052b0, 1.062074627142564335518604915718789933200854739344\
8664109599248189291146283796933b0]
(%i3) ll(%[1],%[2]);
(%o3) [1.0b1, 2.0b1, 3.6194756227592979778565787394402350354250845160819430786\
093514889500602612857053b0, 1.062074627142564335518604915718789933200854739344\
8664109599248189291146283796933b0]
(%i4) float(%o2);
(%o4) [2235209.504622467, 1175297.345031385, 3.619475622759298,
1.062074627142564]
(%i5) float(%o3);
(%o5) [10.0, 20.0, 3.619475622759298, 1.062074627142564]
This implements GeographicLib::TransverseMercatorExact (i.e., Lee, 1976)
using bfloats. However fewer changes from Lee 1976 have been made since
we rely more heavily on the high precision to deal with problem cases.
To change the precision, change fpprec below and reload.
*/
fpprec:80$
load("ellint.mac")$ /* Load elliptic functions */
tol:0.1b0^fpprec$
tol1:0.1b0*sqrt(tol)$ /* For Newton's method */
tol2:sqrt(0.01*tol*tol1)$ /* Also for Newton's method but more conservative */
ahypover:log(10b0^fpprec)+2$
pi:bfloat(%pi)$
degree:pi/180$
ratprint:false$
debugprint:false$
setparams(a1,invf,k1):=(a:bfloat(a1),f:1/bfloat(invf),k0:bfloat(k1),
e2:f*(2-f),
e:sqrt(e2),
kcu:kc(e2),
kcv:kc(1-e2),
ecu:ec(e2),
ecv:ec(1-e2),
n:f/(2-f),
'done)$
setparams(6378137b0, 298.257223563b0, 0.9996b0)$ /* WGS 84 */
/* setparams(6378388b0, 297b0, 0.9996b0)$ International */
/* setparams(1/ec(0.01b0), 30*sqrt(11b0)+100, 1b0)$ testing, eps = 0.1*/
/*
Interpret x_y(y) as x <- y, i.e., "transform quantity y to quantity x"
Let
phi = geodetic latitude
psi = isometric latitude ( + i * lambda )
sigma = TM coords
thom = Thompson coords
*/
/* sqrt(x^2 + y^2) -- Real only */
hypot(x,y):=sqrt(x^2 + y^2)$
/* log(1 + x) -- Real only */
log1p(x) := block([y : 1b0+x],
if y = 1b0 then x else x*log(y)/(y - 1))$
/* Real only */
/* Some versions of Maxima have a buggy atanh
atnh(x) := block([y : abs(x)],
y : log1p(2 * y/(1 - y))/2,
if x < 0 then -y else y)$ */
atnh(x) := atanh(x)$
/* exp(x)-1 -- Real only */
expm1(x) := block([y : exp(bfloat(x)),z],
z : y - 1b0,
if abs(x) > 1b0 then z else if z = 0b0 then x else x * z/log(y))$
/* Real only */
/* Some versions of Maxima have a buggy sinh */
snh(x) := block([u : expm1(x)],
(u / (u + 1)) * (u + 2) /2);
/* Real only */
psi_phi(phi):=block([s:sin(phi)],
asinh(s/max(cos(phi),0.1b0*tol)) - e * atnh(e * s))$
/* Real only */
phi_psi(psi):=block([q:psi,t,dq],
for i do (
t:tanh(q),
dq : -(q - e * atnh(e * t) - psi) * (1 - e2 * t^2) / (1 - e2),
q : q + dq,
if debugprint then print(float(q), float(dq)),
if abs(dq) < tol1 then return(false)),
atan(snh(q)))$
psi_thom_comb(w):=block([jacr:sncndn(bfloat(realpart(w)),1-e2),
jaci:sncndn(bfloat(imagpart(w)),e2),d,d1,d2],
d:(1-e2)*(jaci[2]^2 + e2 * (jacr[1] * jaci[1])^2)^2,
d1:sqrt(jacr[2]^2 + (1-e2) * (jacr[1] * jaci[1])^2),
d2:sqrt(e2 * jacr[2]^2 + (1-e2) * jaci[2]^2),
[
(if d1 > 0b0 then asinh(jacr[1]*jaci[3]/ d1) else signnum(snu) * ahypover)
- (if d2 > 0b0 then e * asinh(e * jacr[1] / d2) else signnum(snu) * ahypover)
+ %i * (if d1 > 0b0 and d2 > 0b0 then
atan2(jacr[3]*jaci[1],jacr[2]*jaci[2])
- e * atan2(e*jacr[2]*jaci[1],jacr[3]*jaci[2]) else 0),
jacr[2]*jacr[3]*jaci[3]*(jaci[2]^2-e2*(jacr[1]*jaci[1])^2)/d
-%i * jacr[1]*jaci[1]*jaci[2]*((jacr[3]*jaci[3])^2+e2*jacr[2]^2)/d]
)$
psi_thom(w):=block([tt:psi_thom_comb(w)],tt[1])$
inv_diff_psi_thom(w):=block([tt:psi_thom_comb(w)],tt[2])$
w0a(psi):=block([lam:bfloat(imagpart(psi)),psia:bfloat(realpart(psi))],
rectform(kcu/(pi/2)*( atan2(snh(psia),cos(lam))
+%i*asinh(sin(lam)/sqrt(cos(lam)^2 + snh(psia)^2)))))$
w0c(psi):=block([m,a,dlam],
dlam:bfloat(imagpart(psi))-pi/2*(1-e),
psi:bfloat(realpart(psi)),
m:sqrt(psi^2+dlam^2)*3/(1-e2)/e,
a:if m = 0b0 then 0 else atan2(dlam-psi, psi+dlam) - 0.75b0*pi,
m:m^(1/3), a:a/3,
m*cos(a)+%i*(m*sin(a)+kcv))$
w0d(psi):=block([psir:-realpart(psi)/e+1b0,lam:(pi/2-imagpart(psi))/e,uu,vv],
uu:asinh(sin(lam)/sqrt(cos(lam)^2+snh(psir)^2))*(1+e2/2),
vv:atan2(cos(lam), snh(psir)) *(1+e2/2),
(-uu+kcu) + %i * (-vv+kcv))$
w0m(psi):=if realpart(psi)<-e/2*pi/2 and
imagpart(psi)>pi/2*(1-2*e) and
realpart(psi) < imagpart(psi)-(pi/2*(1-e)) then w0d(psi) else
if realpart(psi)<e*pi/2 and imagpart(psi)>pi/2*(1-2*e)
then w0c(psi) else w0a(psi)$
w0(psi):=w0m(psi)$
thom_psi(psi):=block([w:w0(psi),dw,v,vv],
if not(abs(psi-pi/2*(1-e)*%i) < e * tol^0.6b0) then
for i do (
if i > 100 then error("too many iterations"),
vv:psi_thom_comb(w),
v:vv[1],
dw:-rectform((v-psi)*vv[2]),
w:w+dw,
dw:abs(dw),
if debugprint then print(float(w),float(dw)),
/* error is approx dw^2/2 */
if dw < tol2 then return(false)
),
w
)$
sigma_thom_comb(w):=block([u:bfloat(realpart(w)),v:bfloat(imagpart(w)),
jacr,jaci,phi,iu,iv,den,den1,er,ei,dnr,dni],
jacr:sncndn(u,1-e2),jaci:sncndn(v,e2),
er:eirx(jacr[1],jacr[2],jacr[3],e2,ecu),
ei:eirx(jaci[1],jaci[2],jaci[3],1-e2,ecv),
den:e2*jacr[2]^2+(1-e2)*jaci[2]^2,
den1:(1-e2)*(jaci[2]^2 + e2 * (jacr[1] * jaci[1])^2)^2,
dnr:jacr[3]*jaci[2]*jaci[3],
dni:-e2*jacr[1]*jacr[2]*jaci[1],
[ er - e2*jacr[1]*jacr[2]*jacr[3]/den
+ %i*(v - ei + (1-e2)*jaci[1]*jaci[2]*jaci[3]/den),
(dnr^2-dni^2)/den1 + %i * 2*dnr*dni/den1])$
sigma_thom(w):=block([tt:sigma_thom_comb(w)],tt[1])$
inv_diff_sigma_thom(w):=block([tt:sigma_thom_comb(w)],tt[2])$
wx0a(sigma):=rectform(sigma*kcu/ecu)$
wx0b(sigma):=block([m,aa],
sigma:rectform(sigma-%i*(kcv-ecv)),
m:abs(sigma)*3/(1-e2),
aa:atan2(imagpart(sigma),realpart(sigma)),
if aa<-pi/2 then aa:aa+2*pi,
aa:aa-pi,
rectform(m^(1/3)*(cos(aa/3b0)+%i*sin(aa/3b0))+%i*kcv))$
wx0c(sigma):=rectform(1/(sigma-(ecu+%i*(kcv-ecv))) + kcu+%i*kcv)$
wx0m(sigma):=block([eta:bfloat(imagpart(sigma)),
xi:bfloat(realpart(sigma))],
if eta > 1.25b0 * (kcv-ecv) or (xi < -0.25*ecu and xi < eta-(kcv-ecv)) then
wx0c(sigma) else
if (eta > 0.75b0 * (kcv-ecv) and xi < 0.25b0 * ecu) or
eta > kcv-ecv or xi < 0 then wx0b(sigma) else wx0a(sigma))$
wx0(sigma):=wx0m(sigma)$
thom_sigma(sigma):=block([w:wx0(sigma),dw,v,vv],
for i do (
if i > 100 then error("too many iterations"),
vv:sigma_thom_comb(w),
v:vv[1],
dw:-rectform((v-sigma)*vv[2]),
w:w+dw,
dw:abs(dw),
if debugprint then print(float(w),float(dw)),
/* error is approx dw^2/2 */
if dw < tol2 then return(false)
),
w
)$
/* Lee/Thompson's method forward */
tm(phi,lam):=block([psi,thom,jacr,jaci,sigma,gam,scale,c],
phi:phi*degree,
lam:lam*degree,
psi:psi_phi(phi),
thom:thom_psi(psi+%i*lam),
jacr:sncndn(bfloat(realpart(thom)),1-e2),
jaci:sncndn(bfloat(imagpart(thom)),e2),
sigma:sigma_thom(thom),
c:cos(phi),
if c > tol1 then (
gam:atan2((1-e2)*jacr[1]*jaci[1]*jaci[2],
jacr[2]*jacr[3]*jaci[3]),
scale:sqrt(1-e2 + e2 * c^2)/c*
sqrt(((1-e2)*jaci[1]^2 + (jacr[2]*jaci[3])^2)/
(e2*jacr[2]^2 + (1-e2)*jaci[2]^2)))
else (gam : lam, scale : 1b0),
[imagpart(sigma)*k0*a,realpart(sigma)*k0*a,gam/degree,k0*scale])$
/* Lee/Thompson's method reverse */
ll(x,y):=block([sigma,thom,jacr,jaci,psi,lam,phi,gam,scale,c],
sigma:y/(a*k0)+%i*x/(a*k0),
thom:thom_sigma(sigma),
jacr:sncndn(bfloat(realpart(thom)),1-e2),
jaci:sncndn(bfloat(imagpart(thom)),e2),
psi:psi_thom(thom),
lam:bfloat(imagpart(psi)),
psi:bfloat(realpart(psi)),
phi:phi_psi(psi),
c:cos(phi),
if c > tol1 then (
gam:atan2((1-e2)*jacr[1]*jaci[1]*jaci[2],
jacr[2]*jacr[3]*jaci[3]),
scale:sqrt(1-e2 + e2 * c^2)/c*
sqrt(((1-e2)*jaci[1]^2 + (jacr[2]*jaci[3])^2)/
(e2*jacr[2]^2 + (1-e2)*jaci[2]^2)))
else (gam : lam, scale : 1b0),
[phi/degree,lam/degree,gam/degree,k0*scale])$
/* Return lat/lon/x/y for a point specified in Thompson coords */
/* Pick u in [0, kcu] and v in [0, kcv] */
lltm(u,v):=block([jacr,jaci,psi,lam,phi,c,gam,scale,sigma,x,y],
u:bfloat(u), v:bfloat(v),
jacr:sncndn(u,1-e2),
jaci:sncndn(v,e2),
psi:psi_thom(u+%i*v),
sigma:sigma_thom(u+%i*v),
x:imagpart(sigma)*k0*a,y:realpart(sigma)*k0*a,
lam:bfloat(imagpart(psi)),
psi:bfloat(realpart(psi)),
phi:phi_psi(psi),
c:cos(phi),
if c > tol1 then (
gam:atan2((1-e2)*jacr[1]*jaci[1]*jaci[2],
jacr[2]*jacr[3]*jaci[3]),
scale:sqrt(1-e2 + e2 * c^2)/c*
sqrt(((1-e2)*jaci[1]^2 + (jacr[2]*jaci[3])^2)/
(e2*jacr[2]^2 + (1-e2)*jaci[2]^2)))
else (gam : lam, scale : 1b0),
[phi/degree,lam/degree,x,y,gam/degree,k0*scale])$
/* Gauss-Krueger series to order n^i forward
Uses the array functions
a1_a[i](n), zeta_a[i](z,n), zeta_d[i](z,n), zetap_a[i](s,n), zetap_d[i](s,n),
defined in tmseries.mac.
*/
tms(phi,lam,i):=block([psi,xip,etap,z,sigma,sp,gam,k,b1],
phi:phi*degree,
lam:lam*degree,
psi:psi_phi(phi),
xip:atan2(snh(psi), cos(lam)),
etap:asinh(sin(lam)/hypot(snh(psi),cos(lam))),
k:sqrt(1 - e2*sin(phi)^2)/(cos(phi)*hypot(snh(psi),cos(lam))),
gam:atan(tan(xip)*tanh(etap)),
z:xip+%i*etap,
b1:a1_a[i](n),
sigma:rectform(b1*zeta_a[i](z,n)),
sp:rectform(zeta_d[i](z,n)),
gam : gam - atan2(imagpart(sp),realpart(sp)),
k : k * b1 * cabs(sp),
[imagpart(sigma)*k0*a,realpart(sigma)*k0*a,gam/degree,k*k0])$
/* Gauss-Krueger series to order n^i reverse */
lls(x,y,i):=block([sigma,b1,s,z,zp,xip,etap,s,c,r,gam,k,lam,psi,phi],
sigma:y/(a*k0)+%i*x/(a*k0),
b1:a1_a[i](n),
s:rectform(sigma/b1),
z:rectform(zetap_a[i](s,n)),
zp:rectform(zetap_d[i](s,n)),
gam : atan2(imagpart(zp), realpart(zp)),
k : b1 / cabs(zp),
xip:realpart(z),
etap:imagpart(z),
s:snh(etap),
c:cos(xip),
r:hypot(s, c),
lam:atan2(s, c),
psi : asinh(sin(xip)/r),
phi :phi_psi(psi),
k : k * sqrt(1 - e2*sin(phi)^2) * r/cos(phi),
gam : gam + atan(tan(xip) * tanh(etap)),
[phi/degree,lam/degree,gam/degree,k*k0])$
/* Approx geodesic distance valid for small displacements */
dist(phi0,lam0,phi,lam):=block([dphi,dlam,nn,hlon,hlat],
dphi:(phi-phi0)*degree,
dlam:(lam-lam0)*degree,
phi0:phi0*degree,
lam0:lam0*degree,
nn : 1/sqrt(1 - e2 * sin(phi0)^2),
hlon : cos(phi0) * nn,
hlat : (1 - e2) * nn^3,
a * hypot(dphi*hlat, dlam*hlon))$
/* Compute truncation errors for all truncation levels */
check(phi,lam):=block([vv,x,y,gam,k,vf,vb,errf,errr,err2,errlist],
phi:min(90-0.01b0,phi),
lam:min(90-0.01b0,lam),
vv:tm(phi,lam),
errlist:[],
x:vv[1], y:vv[2], gam:vv[3], k:vv[4],
for i:1 thru maxpow do (
vf:tms(phi,lam,i),
errf:hypot(vf[1]-x,vf[2]-y)/k,
errfg:abs(vf[3]-gam),
errfk:abs((vf[4]-k)/k),
vb:lls(x,y,i),
errr:dist(phi,lam,vb[1],vb[2]),
errrg:abs(vb[3]-gam),
errrk:abs((vb[4]-k)/k),
errlist:append(errlist,
[max(errf, errr), max(errfg, errrg), max(errfk, errrk)])),
errlist)$
/* Max of output of check over a set of points */
checka(lst):=block([errlist:[],errx],
for i:1 thru 3*maxpow do errlist:cons(0b0,errlist),
for vv in lst do (
errx:check(vv[1],vv[2]),
for i:1 thru 3*maxpow do errlist[i]:max(errlist[i],errx[i])),
errlist)$
|