File: tm.mac

package info (click to toggle)
geographiclib 1.37-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 9,688 kB
  • ctags: 4,871
  • sloc: cpp: 31,440; sh: 11,632; cs: 9,411; ansic: 1,428; java: 1,333; python: 1,131; makefile: 758; xml: 381; pascal: 30
file content (399 lines) | stat: -rw-r--r-- 12,707 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*

Arbitrary precision Transverse Mercator Projection

Copyright (c) Charles Karney (2009-2010) <charles@karney.com> and
licensed under the MIT/X11 License.  For more information, see
http://geographiclib.sourceforge.net/

Reference:

   Charles F. F. Karney,
   Transverse Mercator with an accuracy of a few nanometers,
   J. Geodesy 85(8), 475-485 (Aug. 2011).
   DOI 10.1007/s00190-011-0445-3
   preprint http://arxiv.org/abs/1002.1417
   resource page http://geographiclib.sf.net/tm.html

The parameters for the transformation are set by

setparams(a,invf,k0)$
    sets the major radius, inverse flattening, and central scale
    factor. The default is
      setparams(6378137b0, 298.257223563b0, 0.9996b0)$
    appropriate for UTM applications.

tm(lat,lon);
    takes lat and lon args (in degrees) and returns
      [x, y, convergence, scale]
    [x, y] do not include false eastings/northings but do include the
    scale factor k0.  convergence is in degrees.

ll(x,y);
    takes x and y args (in meters) and returns
      [lat, lon, convergence, scale].

Example:

$ maxima
Maxima 5.15.0 http://maxima.sourceforge.net
Using Lisp CLISP 2.43 (2007-11-18)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
(%i1) load("tm.mac")$
(%i2) tm(10b0,20b0);
(%o2) [2.235209504622466691587930831718465965864199221939781808953597771095103\
6690000464b6, 1.17529734503138466792126931904154130080533935727351398258511134\
68541970512119385b6, 3.6194756227592979778565787394402350354250845160819430786\
093514889500602612857052b0, 1.062074627142564335518604915718789933200854739344\
8664109599248189291146283796933b0]
(%i3) ll(%[1],%[2]);
(%o3) [1.0b1, 2.0b1, 3.6194756227592979778565787394402350354250845160819430786\
093514889500602612857053b0, 1.062074627142564335518604915718789933200854739344\
8664109599248189291146283796933b0]
(%i4) float(%o2);
(%o4) [2235209.504622467, 1175297.345031385, 3.619475622759298,
                                                             1.062074627142564]
(%i5) float(%o3);
(%o5)         [10.0, 20.0, 3.619475622759298, 1.062074627142564]

This implements GeographicLib::TransverseMercatorExact (i.e., Lee, 1976)
using bfloats.  However fewer changes from Lee 1976 have been made since
we rely more heavily on the high precision to deal with problem cases.

To change the precision, change fpprec below and reload.

*/

fpprec:80$
load("ellint.mac")$ /* Load elliptic functions */

tol:0.1b0^fpprec$
tol1:0.1b0*sqrt(tol)$ /* For Newton's method */
tol2:sqrt(0.01*tol*tol1)$ /* Also for Newton's method but more conservative */
ahypover:log(10b0^fpprec)+2$

pi:bfloat(%pi)$
degree:pi/180$
ratprint:false$
debugprint:false$
setparams(a1,invf,k1):=(a:bfloat(a1),f:1/bfloat(invf),k0:bfloat(k1),
  e2:f*(2-f),
  e:sqrt(e2),
  kcu:kc(e2),
  kcv:kc(1-e2),
  ecu:ec(e2),
  ecv:ec(1-e2),
  n:f/(2-f),
  'done)$
setparams(6378137b0, 298.257223563b0, 0.9996b0)$  /* WGS 84 */
/* setparams(6378388b0, 297b0, 0.9996b0)$ International */
/* setparams(1/ec(0.01b0), 30*sqrt(11b0)+100, 1b0)$ testing, eps = 0.1*/

/*
Interpret x_y(y) as x <- y, i.e., "transform quantity y to quantity x"

Let

phi = geodetic latitude
psi = isometric latitude ( + i * lambda )
sigma = TM coords
thom = Thompson coords

*/

/* sqrt(x^2 + y^2) -- Real only */
hypot(x,y):=sqrt(x^2 + y^2)$

/* log(1 + x) -- Real only */
log1p(x) := block([y : 1b0+x],
  if y = 1b0 then x else x*log(y)/(y - 1))$

/* Real only */
/* Some versions of Maxima have a buggy atanh
atnh(x) := block([y : abs(x)],
  y : log1p(2 * y/(1 - y))/2,
  if x < 0 then -y else y)$ */
atnh(x) := atanh(x)$

/* exp(x)-1 -- Real only */
expm1(x) := block([y : exp(bfloat(x)),z],
  z : y - 1b0,
  if abs(x) > 1b0 then z else if z = 0b0 then x else x * z/log(y))$

/* Real only */
/* Some versions of Maxima have a buggy sinh */
snh(x) := block([u : expm1(x)],
  (u / (u + 1)) * (u + 2) /2);

/* Real only */
psi_phi(phi):=block([s:sin(phi)],
  asinh(s/max(cos(phi),0.1b0*tol)) - e * atnh(e * s))$

/* Real only */
phi_psi(psi):=block([q:psi,t,dq],
  for i do (
    t:tanh(q),
    dq : -(q - e * atnh(e * t) - psi) * (1 - e2 * t^2) / (1 - e2),
    q : q + dq,
    if debugprint then print(float(q), float(dq)),
    if abs(dq) < tol1 then return(false)),
  atan(snh(q)))$

psi_thom_comb(w):=block([jacr:sncndn(bfloat(realpart(w)),1-e2),
  jaci:sncndn(bfloat(imagpart(w)),e2),d,d1,d2],
  d:(1-e2)*(jaci[2]^2 + e2 * (jacr[1] * jaci[1])^2)^2,
  d1:sqrt(jacr[2]^2 + (1-e2) * (jacr[1] * jaci[1])^2),
  d2:sqrt(e2 * jacr[2]^2 + (1-e2) * jaci[2]^2),
[
  (if d1 > 0b0 then asinh(jacr[1]*jaci[3]/ d1) else signnum(snu) * ahypover)
  - (if d2 > 0b0 then e * asinh(e * jacr[1] / d2) else signnum(snu) * ahypover)
  + %i * (if d1 > 0b0 and d2 > 0b0 then
    atan2(jacr[3]*jaci[1],jacr[2]*jaci[2])
    - e * atan2(e*jacr[2]*jaci[1],jacr[3]*jaci[2]) else 0),
  jacr[2]*jacr[3]*jaci[3]*(jaci[2]^2-e2*(jacr[1]*jaci[1])^2)/d
  -%i * jacr[1]*jaci[1]*jaci[2]*((jacr[3]*jaci[3])^2+e2*jacr[2]^2)/d]
)$

psi_thom(w):=block([tt:psi_thom_comb(w)],tt[1])$
inv_diff_psi_thom(w):=block([tt:psi_thom_comb(w)],tt[2])$

w0a(psi):=block([lam:bfloat(imagpart(psi)),psia:bfloat(realpart(psi))],
  rectform(kcu/(pi/2)*( atan2(snh(psia),cos(lam))
      +%i*asinh(sin(lam)/sqrt(cos(lam)^2 + snh(psia)^2)))))$

w0c(psi):=block([m,a,dlam],
  dlam:bfloat(imagpart(psi))-pi/2*(1-e),
  psi:bfloat(realpart(psi)),
  m:sqrt(psi^2+dlam^2)*3/(1-e2)/e,
  a:if m = 0b0 then 0 else atan2(dlam-psi, psi+dlam) - 0.75b0*pi,
  m:m^(1/3), a:a/3,
  m*cos(a)+%i*(m*sin(a)+kcv))$

w0d(psi):=block([psir:-realpart(psi)/e+1b0,lam:(pi/2-imagpart(psi))/e,uu,vv],
  uu:asinh(sin(lam)/sqrt(cos(lam)^2+snh(psir)^2))*(1+e2/2),
  vv:atan2(cos(lam), snh(psir)) *(1+e2/2),
  (-uu+kcu) + %i * (-vv+kcv))$

w0m(psi):=if realpart(psi)<-e/2*pi/2 and
imagpart(psi)>pi/2*(1-2*e) and
realpart(psi) < imagpart(psi)-(pi/2*(1-e)) then w0d(psi) else
if realpart(psi)<e*pi/2 and imagpart(psi)>pi/2*(1-2*e)
then w0c(psi) else w0a(psi)$
w0(psi):=w0m(psi)$

thom_psi(psi):=block([w:w0(psi),dw,v,vv],
if not(abs(psi-pi/2*(1-e)*%i) < e * tol^0.6b0) then
  for i do (
    if i > 100 then error("too many iterations"),
    vv:psi_thom_comb(w),
    v:vv[1],
    dw:-rectform((v-psi)*vv[2]),
    w:w+dw,
    dw:abs(dw),
    if debugprint then print(float(w),float(dw)),
    /* error is approx dw^2/2 */
    if dw < tol2 then return(false)
    ),
  w
  )$

sigma_thom_comb(w):=block([u:bfloat(realpart(w)),v:bfloat(imagpart(w)),
  jacr,jaci,phi,iu,iv,den,den1,er,ei,dnr,dni],
  jacr:sncndn(u,1-e2),jaci:sncndn(v,e2),
  er:eirx(jacr[1],jacr[2],jacr[3],e2,ecu),
  ei:eirx(jaci[1],jaci[2],jaci[3],1-e2,ecv),
  den:e2*jacr[2]^2+(1-e2)*jaci[2]^2,
  den1:(1-e2)*(jaci[2]^2 + e2 * (jacr[1] * jaci[1])^2)^2,
  dnr:jacr[3]*jaci[2]*jaci[3],
  dni:-e2*jacr[1]*jacr[2]*jaci[1],
[  er - e2*jacr[1]*jacr[2]*jacr[3]/den
  + %i*(v - ei + (1-e2)*jaci[1]*jaci[2]*jaci[3]/den),
  (dnr^2-dni^2)/den1 + %i * 2*dnr*dni/den1])$

sigma_thom(w):=block([tt:sigma_thom_comb(w)],tt[1])$
inv_diff_sigma_thom(w):=block([tt:sigma_thom_comb(w)],tt[2])$

wx0a(sigma):=rectform(sigma*kcu/ecu)$
wx0b(sigma):=block([m,aa],
  sigma:rectform(sigma-%i*(kcv-ecv)),
  m:abs(sigma)*3/(1-e2),
  aa:atan2(imagpart(sigma),realpart(sigma)),
  if aa<-pi/2 then aa:aa+2*pi,
  aa:aa-pi,
  rectform(m^(1/3)*(cos(aa/3b0)+%i*sin(aa/3b0))+%i*kcv))$
wx0c(sigma):=rectform(1/(sigma-(ecu+%i*(kcv-ecv))) + kcu+%i*kcv)$
wx0m(sigma):=block([eta:bfloat(imagpart(sigma)),
  xi:bfloat(realpart(sigma))],
  if eta > 1.25b0 * (kcv-ecv) or (xi < -0.25*ecu and xi < eta-(kcv-ecv)) then
  wx0c(sigma) else
  if (eta > 0.75b0 * (kcv-ecv) and xi < 0.25b0 * ecu) or
  eta > kcv-ecv or xi < 0 then wx0b(sigma) else wx0a(sigma))$
wx0(sigma):=wx0m(sigma)$
thom_sigma(sigma):=block([w:wx0(sigma),dw,v,vv],
  for i do (
    if i > 100 then error("too many iterations"),
    vv:sigma_thom_comb(w),
    v:vv[1],
    dw:-rectform((v-sigma)*vv[2]),
    w:w+dw,
    dw:abs(dw),
    if debugprint then print(float(w),float(dw)),
    /* error is approx dw^2/2 */
    if dw < tol2 then return(false)
    ),
  w
  )$

/* Lee/Thompson's method forward */

tm(phi,lam):=block([psi,thom,jacr,jaci,sigma,gam,scale,c],
  phi:phi*degree,
  lam:lam*degree,
  psi:psi_phi(phi),
  thom:thom_psi(psi+%i*lam),
  jacr:sncndn(bfloat(realpart(thom)),1-e2),
  jaci:sncndn(bfloat(imagpart(thom)),e2),
  sigma:sigma_thom(thom),
  c:cos(phi),
  if c > tol1 then (
    gam:atan2((1-e2)*jacr[1]*jaci[1]*jaci[2],
      jacr[2]*jacr[3]*jaci[3]),
    scale:sqrt(1-e2 + e2 * c^2)/c*
    sqrt(((1-e2)*jaci[1]^2 + (jacr[2]*jaci[3])^2)/
      (e2*jacr[2]^2 + (1-e2)*jaci[2]^2)))
  else (gam : lam, scale : 1b0),
  [imagpart(sigma)*k0*a,realpart(sigma)*k0*a,gam/degree,k0*scale])$

/* Lee/Thompson's method reverse */

ll(x,y):=block([sigma,thom,jacr,jaci,psi,lam,phi,gam,scale,c],
  sigma:y/(a*k0)+%i*x/(a*k0),
  thom:thom_sigma(sigma),
  jacr:sncndn(bfloat(realpart(thom)),1-e2),
  jaci:sncndn(bfloat(imagpart(thom)),e2),
  psi:psi_thom(thom),
  lam:bfloat(imagpart(psi)),
  psi:bfloat(realpart(psi)),
  phi:phi_psi(psi),
  c:cos(phi),
  if c > tol1 then (
    gam:atan2((1-e2)*jacr[1]*jaci[1]*jaci[2],
      jacr[2]*jacr[3]*jaci[3]),
    scale:sqrt(1-e2 + e2 * c^2)/c*
    sqrt(((1-e2)*jaci[1]^2 + (jacr[2]*jaci[3])^2)/
      (e2*jacr[2]^2 + (1-e2)*jaci[2]^2)))
  else (gam : lam, scale : 1b0),
  [phi/degree,lam/degree,gam/degree,k0*scale])$

/* Return lat/lon/x/y for a point specified in Thompson coords */
/* Pick u in [0, kcu] and v in [0, kcv] */
lltm(u,v):=block([jacr,jaci,psi,lam,phi,c,gam,scale,sigma,x,y],
  u:bfloat(u), v:bfloat(v),
  jacr:sncndn(u,1-e2),
  jaci:sncndn(v,e2),
  psi:psi_thom(u+%i*v),
  sigma:sigma_thom(u+%i*v),
  x:imagpart(sigma)*k0*a,y:realpart(sigma)*k0*a,
  lam:bfloat(imagpart(psi)),
  psi:bfloat(realpart(psi)),
  phi:phi_psi(psi),
  c:cos(phi),
  if c > tol1 then (
    gam:atan2((1-e2)*jacr[1]*jaci[1]*jaci[2],
      jacr[2]*jacr[3]*jaci[3]),
    scale:sqrt(1-e2 + e2 * c^2)/c*
    sqrt(((1-e2)*jaci[1]^2 + (jacr[2]*jaci[3])^2)/
      (e2*jacr[2]^2 + (1-e2)*jaci[2]^2)))
  else (gam : lam, scale : 1b0),
  [phi/degree,lam/degree,x,y,gam/degree,k0*scale])$

/* Gauss-Krueger series to order n^i forward

Uses the array functions

 a1_a[i](n), zeta_a[i](z,n), zeta_d[i](z,n), zetap_a[i](s,n), zetap_d[i](s,n),

defined in tmseries.mac.
*/

tms(phi,lam,i):=block([psi,xip,etap,z,sigma,sp,gam,k,b1],
  phi:phi*degree,
  lam:lam*degree,
  psi:psi_phi(phi),
  xip:atan2(snh(psi), cos(lam)),
  etap:asinh(sin(lam)/hypot(snh(psi),cos(lam))),
  k:sqrt(1 - e2*sin(phi)^2)/(cos(phi)*hypot(snh(psi),cos(lam))),
  gam:atan(tan(xip)*tanh(etap)),
  z:xip+%i*etap,
  b1:a1_a[i](n),
  sigma:rectform(b1*zeta_a[i](z,n)),
  sp:rectform(zeta_d[i](z,n)),
  gam : gam - atan2(imagpart(sp),realpart(sp)),
  k : k * b1 * cabs(sp),
  [imagpart(sigma)*k0*a,realpart(sigma)*k0*a,gam/degree,k*k0])$

/* Gauss-Krueger series to order n^i reverse */

lls(x,y,i):=block([sigma,b1,s,z,zp,xip,etap,s,c,r,gam,k,lam,psi,phi],
  sigma:y/(a*k0)+%i*x/(a*k0),
  b1:a1_a[i](n),
  s:rectform(sigma/b1),
  z:rectform(zetap_a[i](s,n)),
  zp:rectform(zetap_d[i](s,n)),
  gam : atan2(imagpart(zp), realpart(zp)),
  k : b1 / cabs(zp),
  xip:realpart(z),
  etap:imagpart(z),
  s:snh(etap),
  c:cos(xip),
  r:hypot(s, c),
  lam:atan2(s, c),
  psi : asinh(sin(xip)/r),
  phi :phi_psi(psi),
  k : k * sqrt(1 - e2*sin(phi)^2) * r/cos(phi),
  gam : gam + atan(tan(xip) * tanh(etap)),
  [phi/degree,lam/degree,gam/degree,k*k0])$

/* Approx geodesic distance valid for small displacements */

dist(phi0,lam0,phi,lam):=block([dphi,dlam,nn,hlon,hlat],
  dphi:(phi-phi0)*degree,
  dlam:(lam-lam0)*degree,
  phi0:phi0*degree,
  lam0:lam0*degree,
  nn : 1/sqrt(1 - e2 * sin(phi0)^2),
  hlon : cos(phi0) * nn,
  hlat : (1 - e2) * nn^3,
  a * hypot(dphi*hlat, dlam*hlon))$

/* Compute truncation errors for all truncation levels */

check(phi,lam):=block([vv,x,y,gam,k,vf,vb,errf,errr,err2,errlist],
  phi:min(90-0.01b0,phi),
  lam:min(90-0.01b0,lam),
  vv:tm(phi,lam),
  errlist:[],
  x:vv[1], y:vv[2], gam:vv[3], k:vv[4],
  for i:1 thru maxpow do (
    vf:tms(phi,lam,i),
    errf:hypot(vf[1]-x,vf[2]-y)/k,
    errfg:abs(vf[3]-gam),
    errfk:abs((vf[4]-k)/k),
    vb:lls(x,y,i),
    errr:dist(phi,lam,vb[1],vb[2]),
    errrg:abs(vb[3]-gam),
    errrk:abs((vb[4]-k)/k),
    errlist:append(errlist,
      [max(errf, errr), max(errfg, errrg), max(errfk, errrk)])),
  errlist)$

/* Max of output of check over a set of points */

checka(lst):=block([errlist:[],errx],
  for i:1 thru 3*maxpow do errlist:cons(0b0,errlist),
  for vv in lst do (
    errx:check(vv[1],vv[2]),
    for i:1 thru 3*maxpow do errlist[i]:max(errlist[i],errx[i])),
  errlist)$