File: Geod3ODE.cpp

package info (click to toggle)
geographiclib 2.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,572 kB
  • sloc: cpp: 27,765; sh: 5,463; makefile: 695; python: 12; ansic: 10
file content (370 lines) | stat: -rw-r--r-- 12,779 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
/**
 * \file Geod3ODE.cpp
 * \brief Command line utility for using an ODE solver for geodesics on a
 * triaxial ellipsoid
 *
 * Copyright (c) Charles Karney (2024-2025) <karney@alum.mit.edu> and licensed
 * under the MIT/X11 License.  For more information, see
 * https://geographiclib.sourceforge.io/
 *
 * Use "Geod3ODE --help" for brief documentation.
 **********************************************************************/

#include <iostream>
#include <iomanip>
#include <string>
#include <sstream>
#include <fstream>
#include <GeographicLib/Math.hpp>
#include <GeographicLib/DMS.hpp>
#include <GeographicLib/Utility.hpp>
#include <GeographicLib/Angle.hpp>

#if defined(_MSC_VER)
// Squelch warning triggered by boost:
//   4127: conditional expression is constant
#  pragma warning (disable: 4127)
#endif
#include "TriaxialGeodesicODE.hpp"

// #include "GeodSolve.usage"

using real = GeographicLib::Math::real;
using ang = GeographicLib::Angle;

std::string ErrorString(real err, int prec) {
  std::ostringstream s;
  s << std::scientific << std::setprecision(prec) << err;
  return s.str();
}

int usage(int retval, bool /*brief*/) {
  (retval ? std::cerr : std:: cout ) << "Usage:\n"
"\n"
"  This implements some of the functionality of Geod3Solve(1) by integrating the\n"
"  ordinary differential equations for the geodesic.  Only direct geodesic\n"
"  calculations are supported.\n"
"\n"
"  The following options of Geod3Solve(1) are supported\n"
"    -t a b c | -e b e2 k2 kp2 \n"
"    -L bet1 omg1 alp1\n"
"    -u\n"
"    -d | -:\n"
"    -w \n"
"    -f\n"
"    -p prec\n"
"\n"
"  The following options of Geod3Solve(1) are not supported\n"
"    -i\n"
"    -e2\n"
"    -u\n"
"\n"
"  The following are new options\n"
"\n"
"    -b\n"
"      bufferd mode (only useful with the -L option).  Causes all the s12 values\n"
"      to be buffered and fed into the integrator at the end.  This sorts the\n"
"      entries so that the integrator doesn't have to the continually restarted.\n"
"\n"
"    -x\n"
"      extended mode.  Computes and prints the reduced length, m12, and the\n"
"      geodesic scales, M12, M21.\n"
"\n"
"    --eps eps\n"
"      sets the eps parameter in the constructor for TriaxialGeodesicODE.\n"
"\n"
"    --dense\n"
"      use the dense solver allowing interpolated way points to be computed\n"
"      inexpensively.\n"
"\n"
"    --normp\n"
"      force the solution vector onto the ellipsoid when computing the\n"
"      acceleration.\n"
"\n"
"    --errors\n"
"      print error estimates, the distance from the ellipsoid (in meters) and\n"
"      the deviation of the velocity from a unit tangential vector.\n"
"\n"
"    --steps\n"
"      print the number of integration steps and the number of times the\n"
"      acceleration was computed.\n";
  return retval;
}

int main(int argc, const char* const argv[]) {
  try {
    using namespace GeographicLib;
    using namespace Triaxial;
    using namespace experimental;
    Utility::set_digits();
    bool dms = false, longfirst = false,
      linecalc = false, extended = false, dense = false, normp = false,
      buffered = false, full = false, errors = false, steps = false;
    real
      a = Constants::Triaxial_Earth_a(),
      b = Constants::Triaxial_Earth_b(),
      c = Constants::Triaxial_Earth_c(),
      e2 = -1, k2 = 0, kp2 = 0, eps = 0;
    ang bet1 = ang(0), omg1 = ang(0), alp1 = ang(0), bet2, omg2, alp2;
    real s12, m12, M12, M21;
    std::vector<real> s12v;
    int prec = 3;
    std::string istring, ifile, ofile, cdelim;
    char lsep = ';', dmssep = char(0);

    for (int m = 1; m < argc; ++m) {
      std::string arg(argv[m]);
      if (arg == "-t") {
        if (m + 3 >= argc) return usage(1, true);
        try {
          a = Utility::val<real>(std::string(argv[m + 1]));
          b = Utility::val<real>(std::string(argv[m + 2]));
          c = Utility::val<real>(std::string(argv[m + 3]));
        }
        catch (const std::exception& e) {
          std::cerr << "Error decoding arguments of -t: " << e.what() << "\n";
          return 1;
        }
        e2 = -1;
        m += 3;
      } else if (arg == "-e") {
        // Cayley ellipsoid sqrt([2,1,1/2]) is
        // -e 1 3/2 1 2
        if (m + 4 >= argc) return usage(1, true);
        try {
          b = Utility::val<real>(std::string(argv[m + 1]));
          e2 = Utility::fract<real>(std::string(argv[m + 2]));
          k2 = Utility::fract<real>(std::string(argv[m + 3]));
          kp2 = Utility::fract<real>(std::string(argv[m + 4]));
        }
        catch (const std::exception& e) {
          std::cerr << "Error decoding arguments of -e: " << e.what() << "\n";
          return 1;
        }
        a = -1;
        m += 4;
      } else if (arg == "-x")
        extended = true;
      else if (arg == "-L") {
        linecalc = true;
        if (m + 3 >= argc) return usage(1, true);
        try {
          ang::DecodeLatLon(std::string(argv[m + 1]),
                              std::string(argv[m + 2]),
                              bet1, omg1, longfirst);
          alp1 = ang::DecodeAzimuth(std::string(argv[m + 3]));
        }
        catch (const std::exception& e) {
          std::cerr << "Error decoding arguments of -L: " << e.what() << "\n";
          return 1;
        }
        m += 3;
      } else if (arg == "--eps") {
        if (m + 1 >= argc) return usage(1, true);
        try {
          using std::pow;
          eps = pow(std::numeric_limits<real>::epsilon(),
                    Utility::fract<real>(std::string(argv[m + 1])));
        }
        catch (const std::exception& e) {
          std::cerr << "Error decoding argument of --eps: " << e.what() << "\n";
          return 1;
        }
        m += 1;
      } else if (arg == "--dense")
        dense = true;
      else if (arg == "--normp")
        normp = true;
      else if (arg == "--errors")
        errors = true;
      else if (arg == "--steps")
        steps = true;
      else if (arg == "-b")
        buffered = true;
      else if (arg == "-f")
        full = true;
      else if (arg == "-d") {
        dms = true;
        dmssep = '\0';
      } else if (arg == "-:") {
        dms = true;
        dmssep = ':';
      } else if (arg == "-w")
        longfirst = !longfirst;
      else if (arg == "-p") {
        if (++m == argc) return usage(1, true);
        try {
          prec = Utility::val<int>(std::string(argv[m]));
        }
        catch (const std::exception&) {
          std::cerr << "Precision " << argv[m] << " is not a number\n";
          return 1;
        }
      } else if (arg == "--input-string") {
        if (++m == argc) return usage(1, true);
        istring = argv[m];
      } else if (arg == "--input-file") {
        if (++m == argc) return usage(1, true);
        ifile = argv[m];
      } else if (arg == "--output-file") {
        if (++m == argc) return usage(1, true);
        ofile = argv[m];
      } else if (arg == "--line-separator") {
        if (++m == argc) return usage(1, true);
        if (std::string(argv[m]).size() != 1) {
          std::cerr << "Line separator must be a single character\n";
          return 1;
        }
        lsep = argv[m][0];
      } else if (arg == "--comment-delimiter") {
        if (++m == argc) return usage(1, true);
        cdelim = argv[m];
      } else if (arg == "--version") {
        std::cout << argv[0] << ": GeographicLib version "
                  << GEOGRAPHICLIB_VERSION_STRING << "\n";
        return 0;
      } else
        return usage(!(arg == "-h" || arg == "--help"), arg != "--help");
    }

    Ellipsoid3 t(e2 >= 0 ? Ellipsoid3(b, e2, k2, kp2) : Ellipsoid3(a, b, c));
    if (!ifile.empty() && !istring.empty()) {
      std::cerr << "Cannot specify --input-string and --input-file together\n";
      return 1;
    }
    if (ifile == "-") ifile.clear();
    std::ifstream infile;
    std::istringstream instring;
    if (!ifile.empty()) {
      infile.open(ifile.c_str());
      if (!infile.is_open()) {
        std::cerr << "Cannot open " << ifile << " for reading\n";
        return 1;
      }
    } else if (!istring.empty()) {
      std::string::size_type m = 0;
      while (true) {
        m = istring.find(lsep, m);
        if (m == std::string::npos)
          break;
        istring[m] = '\n';
      }
      instring.str(istring);
    }
    std::istream* input = !ifile.empty() ? &infile :
      (!istring.empty() ? &instring : &std::cin);

    std::ofstream outfile;
    if (ofile == "-") ofile.clear();
    if (!ofile.empty()) {
      outfile.open(ofile.c_str());
      if (!outfile.is_open()) {
        std::cerr << "Cannot open " << ofile << " for writing\n";
        return 1;
      }
    }
    std::ostream* output = !ofile.empty() ? &outfile : &std::cout;

    using std::round, std::log10;
    int disprec = int(round(log10(6400000/b)));
    // Max precision = 10: 0.1 nm in distance, 10^-15 deg (= 0.11 nm),
    // 10^-11 sec (= 0.3 nm).
    prec = std::min(10 + Math::extra_digits(), std::max(0, prec));
    std::string s, eol, sbet1, somg1, salp1, sbet2, somg2, salp2, ss12, strc;
    std::istringstream str;
    int retval = 0;
    buffered = buffered && linecalc;
    errors = errors && !buffered;
    TriaxialGeodesicODE l = linecalc ?
      TriaxialGeodesicODE(t, bet1, omg1, alp1, extended, dense, normp, eps) :
      TriaxialGeodesicODE(t, extended, dense, normp, eps);

    while (std::getline(*input, s)) {
      try {
        eol = "\n";
        if (!cdelim.empty()) {
          std::string::size_type m = s.find(cdelim);
          if (m != std::string::npos) {
            eol = " " + s.substr(m) + "\n";
            s = s.substr(0, m);
          }
        }
        str.clear(); str.str(s);
        if (!(linecalc ? (str >> ss12) :
              (str >> sbet1 >> somg1 >> salp1 >> ss12)))
          throw GeographicErr("Incomplete input: " + s);
        if (str >> strc)
          throw GeographicErr("Extraneious input: " + s);
        s12 = Utility::val<real>(ss12);
        if (linecalc) {
          if (buffered) s12v.push_back(s12);
        } else {
          ang::DecodeLatLon(sbet1, somg1, bet1, omg1, longfirst);
          alp1 = ang::DecodeAzimuth(salp1);
          l.Reset(bet1, omg1, alp1);
        }
        if (!buffered) {
          auto errs = l.Position(s12, bet2, omg2, alp2, m12, M12, M21);
          if (full)
            *output << ang::LatLonString(bet1, omg1, prec, dms, dmssep,
                                         longfirst) << " "
                    << ang::AzimuthString(alp1, prec, dms, dmssep) << " ";
          *output << ang::LatLonString(bet2, omg2, prec, dms, dmssep,
                                       longfirst) << " "
                  << ang::AzimuthString(alp2, prec, dms, dmssep);
          if (full)
            *output << " " << Utility::str(s12, prec + disprec);
          if (extended)
            *output << " " << Utility::str(m12, prec + disprec)
                    << " " << Utility::str(M12, prec+7)
                    << " " << Utility::str(M21, prec+7);
          if (steps)
            *output << " " << l.NSteps() << " " << l.IntSteps();
          if (errors)
            *output << " " << ErrorString(errs.first, 2)
                    << " " << ErrorString(errs.second, 2);
          *output << eol;
        }
      }
      catch (const std::exception& e) {
        if (buffered)
          s12v.push_back(Math::NaN());
        else
          // Write error message cout so output lines match input lines
          *output << "ERROR: " << e.what() << " " << s << "\n";
        retval = 1;
      }
    }

    if (buffered) {
      std::vector<ang> bet2v, omg2v, alp2v;
      std::vector<real> m12v, M12v, M21v;
      l.Position(s12v, bet2v, omg2v, alp2v, m12v, M12v, M21v);
      for (size_t i = 0; i < s12v.size(); ++i) {
          if (full)
            *output << ang::LatLonString(bet1, omg1, prec, dms, dmssep,
                                         longfirst) << " "
                    << ang::AzimuthString(alp1, prec, dms, dmssep) << " ";
          *output << ang::LatLonString(bet2v[i], omg2v[i], prec, dms, dmssep,
                                  longfirst) << " "
                  << ang::AzimuthString(alp2v[i], prec, dms, dmssep);
          if (full)
            *output << " " << Utility::str(s12v[i], prec + disprec);
          if (extended)
            *output << " " << Utility::str(m12v[i], prec + disprec)
                    << " " << Utility::str(M12v[i], prec+7)
                    << " " << Utility::str(M21v[i], prec+7);
          *output << eol;
      }
    }
    return retval;
  }
  catch (const std::exception& e) {
    std::cerr << "Caught exception: " << e.what() << "\n";
    return 1;
  }
  catch (...) {
    std::cerr << "Caught unknown exception\n";
    return 1;
  }
}