1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
|
/**
* \file Angle.hpp
* \brief Header for the GeographicLib::AngleT class
*
* The class provide an accurate representation of angle via 3 numbers, its
* sine and cosine, and the number of turns.
*
* Copyright (c) Charles Karney (2024-2025) <karney@alum.mit.edu> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_ANGLE_HPP)
#define GEOGRAPHICLIB_ANGLE_HPP 1
#include <string>
#include <GeographicLib/Math.hpp>
namespace GeographicLib {
/**
* \brief An accurate representation of angles.
*
* @tparam T the working floating point type.
*
* This class provides an accurate representation of angle via 3 numbers, its
* sine = \e s and cosine = \e c, and the number of turns = \e n. The angle
* is then 2\e n π + atan2(\e s, \e c). This representation offers
* several advantages:
* - the cardinal directors (multiples of 90°) are exactly represented (a
* benefit shared by representing angles as degrees);
* - angles very close to any cardinal direction are accurately represented;
* - there's no loss of precision with large angles (outside the "normal"
* range [−180°, +180°]);
* - various operations, such as adding a multiple of 90° to an angle are
* performed exactly.
* .
* This representation does not favor degrees over radians. However, the
* one-argument constructor, AngleT(T), does the conversion from degrees and
* the cast to T, AngleT::operator T(), returns the angle in degrees. There
* are alternatives, radians(T) and radians() const, to allow these
* conversions with radians.
*
* N.B. \e n is stored as a real. This allows it to be inf or nan.
*
* Example of use:
* \include example-Angle.cpp
**********************************************************************/
template<typename T = Math::real>
class AngleT {
// No GEOGRAPHICLIB_EXPORT because this is a template class (like
// PolygonAreaT). Not sure why Accumulator needs GEOGRAPHICLIB_EXPORT.
private:
T _s, _c, _n;
static T rnd(T x);
public:
/** \name Creating AngleT objects.
**********************************************************************/
///@{
/**
* The default constructor.
*
* This sets the angle to 0.
**********************************************************************/
AngleT() : _s(0), _c(1), _n(0) {}
/**
* The general constructor.
*
* @param[in] s the sine component.
* @param[in] c the cosine component.
* @param[in] num the number of turns (default 0).
* @param[in] normp are \e s and \e c normalized (default false).
*
* \warning either \e s or \e c can be infinite, but not both.
*
* By default, the point (\e s, \e c) is scaled to lie on the unit circle.
* Setting \e normp = true skips this step; in this case (\e s, \e c)
* should already lie on the unit circle.
**********************************************************************/
AngleT(T s, T c, T num = 0, bool normp = false);
/**
* The 1-argument constructor.
*
* @param[in] deg the angle in degrees.
*
* \note This is an explicit constructor to avoid accidental conversions.
**********************************************************************/
explicit AngleT(T deg);
/**
* The convert an angle in degrees to an AngleT.
*
* @param[in] deg the angle in degrees.
* @return the AngleT.
*
* \note This mimics the behavior of AngleT(T deg);
**********************************************************************/
static AngleT degrees(T deg);
/**
* Convert an angle in radians to an AngleT.
*
* @param[in] rad the angle in radians.
* @return the AngleT.
*
* \note This is the radians analog of degrees(T).
**********************************************************************/
static AngleT radians(T rad);
/**
* Convert an lambertian to an AngleT.
*
* @param[in] q the lambertian of the angle.
* @return the AngleT.
*
* This sets the angle to atan(sinh(\e q)).
**********************************************************************/
static AngleT lam(T q);
/**
* Not an angle.
*
* @return the AngleT equivalent to not-a-number.
**********************************************************************/
static AngleT NaN();
/**
* A cardinal direction.
*
* @param[in] q the number of quarter turns.
* @return the AngleT equivalent to \e q quarter turns.
*
* \e q is rounded to an integer and \e q = ±0 are distinguished.
* NaN() is returned is \e q is not finite.
**********************************************************************/
static AngleT cardinal(T q);
/**
* Return a tiny angle.
*
* @return a tiny angle.
*
* This allows angles extremely close to the cardinal directions to be
* generated. The round() function will flush this angle to 0.
**********************************************************************/
static AngleT eps();
///@}
/** \name Inspector functions.
**********************************************************************/
///@{
/**
* @return the sine of the angle.
**********************************************************************/
T s() const { return _s; }
/**
* @return the cosine of the angle.
**********************************************************************/
T c() const { return _c; }
/**
* @return the tangent of the angle.
**********************************************************************/
T t() const { return _s/_c; }
/**
* @return the number of turns.
**********************************************************************/
T n() const {
return _n + 0; // Convert -0 to +0
}
/**
* @return the number of turns treating −180° as +180° less 1
* turn.
**********************************************************************/
T n0() const;
///@}
/** \name Converting AngleT into other representations
**********************************************************************/
///@{
/**
* Convert an AngleT to degrees via a type conversion.
*
* @return the angle in degrees.
*
* \note This is an explicit type conversion to avoid accidental
* conversions.
**********************************************************************/
explicit operator T() const;
/**
* Convert an AngleT to degrees.
*
* @return the angle in degrees.
*
* \note This mimics the behavior of AngleT::operator T().
**********************************************************************/
T degrees() const;
/**
* Convert an AngleT to degrees ignoring the number of turns.
*
* @return the angle in degrees assuming n() is zero.
**********************************************************************/
T degrees0() const;
/**
* Convert an AngleT to radians.
*
* @return the angle in radians.
*
* \note This is the radians analog of degrees().
**********************************************************************/
T radians() const;
/**
* Convert an AngleT to radians ignoring the number of turns.
*
* @return the angle in radians assuming n() is zero.
*
* \note This is the radians analog of degrees0().
**********************************************************************/
T radians0() const;
/**
* Return the lambertian of the AngleT.
*
* @return the lambertian.
*
* The lambertian of φ is asinh tan φ.
**********************************************************************/
T lam() const;
/**
* Return the nearest cardinal direction as an AngleT.
*
* @param[in] ind an indicator.
* @return the nearest cardinal direction as an AngleT.
*
* If \e ind == 0 (the default) the closest cardinal direction is returned.
* Otherwise, if \e ind is even, the closest even (N/S) cardinal direction
* is returned; or, if \e ind is odd, the closest odd (E/W) cardinal
* direction is returned.
**********************************************************************/
AngleT nearest(unsigned ind = 0U) const;
/**
* Return the nearest cardinal direction as an integer.
*
* @return the nearest cardinal direction as an integer.
*
* \note This is the reverse of cardinal(T).
**********************************************************************/
T ncardinal() const;
unsigned quadrant() const;
///@}
/** \name Elementary arithmetic operations on AngleT
**********************************************************************/
///@{
/**
* Return the negated AngleT.
*
* @return minus the AngleT
**********************************************************************/
AngleT operator-() const;
/**
* Implement the += operator.
*
* @param[in] p the AngleT to be added.
* @return the current AngleT after the addition.
**********************************************************************/
AngleT& operator+=(const AngleT& p);
/**
* Implement the -= operator.
*
* @param[in] p the AngleT to be subtracted.
* @return the current AngleT after the subtraction.
**********************************************************************/
AngleT& operator-=(const AngleT& p);
/**
* Implement the + operator.
*
* @param[in] p the AngleT to be added.
* @return the result of the addition; the current AngleT is not modified.
**********************************************************************/
AngleT operator+(const AngleT& p) const;
/**
* Implement the - operator.
*
* @param[in] p the AngleT to be subtracted.
* @return the result of the subtraction; the current AngleT is not
* modified.
**********************************************************************/
AngleT operator-(const AngleT& p) const;
/**
* Test for a zero angle.
*
* @param[in] mult multiplier of machine epsilon used in test (default 0).
* @return true if this AngleT is withing \e mult ε of zero.
**********************************************************************/
bool zerop(T mult = 0) const;
/**
* Implement the == operator.
*
* @param[in] p the AngleT to be compared against
* @return *this == \e p.
**********************************************************************/
bool operator==(const AngleT& p) const;
///@}
/** \name Operations which modify a AngleT
**********************************************************************/
///@{
/**
* "Round" the AngleT the == operator.
*
* @return the AngleT with tiny values of s() and c() set to ±0.
*
* This ensures that the smallest gaps between sine and cosine values is
* ε/2048.
**********************************************************************/
AngleT& round();
/**
* Renormalize the sine and cosine values
*
* @return the modified AngleT.
*
* During arithmetic operations on AngleT object, no effort is mode to
* ensure that (s(), c()) remains on the unit circle. This function
* corrects this.
**********************************************************************/
AngleT& renormalize();
/**
* Reduce the angle to [−180°, +180°]
*
* @return the modified AngleT, obtained by setting n() to zero.
**********************************************************************/
AngleT& setn(T n = 0);
/**
* Reduce the angle to (−180°, +180°]
*
* @return the modified AngleT.
*
* This differs from setn(T) by treating −180° as +180° less
* 1 turn.
**********************************************************************/
AngleT& setn0(T n = 0);
/**
* Set the quadrant of an AngleT the angle to (−180°, +180°]
*
* @param[in] q the quadrant.
* @return the modified AngleT.
*
* This sets the signs of s() and c() according to e q.
*
* \note Only the low two bits of \e q are used. n() is unchanged.
**********************************************************************/
AngleT& setquadrant(unsigned q);
/**
* Reflect the angle is various ways
*
* @param[in] flips change the sign of s()
* @param[in] flipc change the sign of c()
* @param[in] swapp swap s() and c()
* @return the modified AngleT.
*
* \note The operations are carried out in the order of the parameters.
**********************************************************************/
AngleT& reflect(bool flips, bool flipc = false, bool swapp = false);
///@}
/** \name Operations which return a new AngleT
**********************************************************************/
///@{
/**
* Return an AngleT in [−180°, +180°].
*
* @return the new AngleT.
*
* This returns the AngleT with n() set to zero.
**********************************************************************/
AngleT base() const;
/**
* Return an AngleT centered about another AngleT
*
* @param[in] c the center AngleT
* @return the new AngleT.
*
* This returns the result of adjusting n() so that the new AngleT is with
* ±180° of \e c.
**********************************************************************/
AngleT rebase(const AngleT& c) const;
/**
* Return an AngleT with the sign optionally flipped
*
* @param[in] mult
* @return the new AngleT.
*
* return signbit(\e mult) ? -*this : *this.
**********************************************************************/
AngleT flipsign(T mult) const;
/**
* The "reduced latitude" operation.
*
* @param[in] m
* @return the atan(m * tan(*this))
*
* However the quadrant of the result tracking that of *this through
* multiples turns.
**********************************************************************/
AngleT modang(T m) const;
///@}
/** \name Converting AngleT to and from a string representation
**********************************************************************/
///@{
/**
* Interpret two strings as latitude and longitude.
*
* @param[in] stra the first string
* @param[in] strb the second string
* @param[out] lat the latitude
* @param[out] lon the longitude
* @param[in] longfirst (default false) whether the longitude is given
* first.
*
* In the absence of hemisphere indicators (N/S for latitude and E/W for
* longitude), it is assumed that the first string is the latitude.
* Setting \e longfirst = true uses the opposite convention. The
* hemisphere indicators can also be used to set the signs of the angles.
**********************************************************************/
static void DecodeLatLon(const std::string& stra, const std::string& strb,
AngleT& lat, AngleT& lon,
bool longfirst = false);
/**
* Interpret a string as azimuth
*
* @param[in] azistr the string representing the azimuth
* @return the azimuth
*
* The hemisphere indicators E/W can be used to set the sign of the
* azimuth.
**********************************************************************/
static AngleT DecodeAzimuth(const std::string& azistr);
/**
* Create a string for a latitude-longitude pair.
*
* @param[in] lat the latitude.
* @param[in] lon the longitude.
* @param[in] prec the precision relative to 1°.
* @param[in] dms (default false) whether to use degrees/minutes/seconds as
* opposed to decimal degrees
* @param[in] dmssep (default NULL) the separator to use with the DMS
* representation instead of d ' ".
* @param[in] longfirst (default false) whether to list the longitude
* first.
* @return string representation
*
* With dms = true the hemisphere indicators N/S and E/W are used to
* indicator the signs of the latitude and longitude.
**********************************************************************/
static std::string LatLonString(AngleT lat, AngleT lon, int prec,
bool dms = false, char dmssep = '\0',
bool longfirst = false);
/**
* Create a string for an azimuth.
*
* @param[in] azi the azimuth.
* @param[in] prec the precision relative to 1°.
* @param[in] dms (default false) whether to use degrees/minutes/seconds as
* opposed to decimal degrees
* @param[in] dmssep (default NULL) the separator to use with the DMS
* representation instead of d ' ".
* @return string representation
*
* With dms = true the hemisphere indicators and E/W is used to
* indicator the sign of the azimuth.
**********************************************************************/
static std::string AzimuthString(AngleT azi, int prec,
bool dms = false, char dmssep = '\0');
///@}
};
template<typename T>
inline AngleT<T>::AngleT(T s, T c, T num, bool normp)
: _s(s)
, _c(c)
, _n(num)
{
using std::isfinite, std::isnan, std::isinf, std::hypot,
std::copysign, std::rint;
_n = rint(_n);
if (!normp) {
// Cannot just use Math::norm because of all the special cases
T h = hypot(_s, _c);
if (h == 0) {
// If y is +/-0 and x = -0, +/-pi is returned.
// If y is +/-0 and x = +0, +/-0 is returned.
// So retain the sign of _s = +/-0
_c = copysign(T(1), _c);
} else if (isfinite(h)) {
_s /= h; _c /= h;
} else if (isnan(h) || (isinf(_s) && isinf(_c)))
_s = _c = Math::NaN();
else if (isinf(_s)) {
// infinite, finite
_s = copysign(T(1), _s);
_c = copysign(T(0), _c);
} else {
// isinf(cos); finite, infinite
_s = copysign(T(0), _s);
_c = copysign(T(1), _c);
}
}
}
template<typename T>
inline AngleT<T>::AngleT(T deg) {
using std::rint;
Math::sincosd(deg, _s, _c);
_n = rint( (deg - Math::atan2d(_s, _c)) / Math::td );
}
template<typename T>
inline AngleT<T>::operator T() const {
T d = degrees0();
// Preserve sign of +/-0
return _n == 0 ? d : d + Math::td * _n;
}
template<typename T>
inline AngleT<T> AngleT<T>::degrees(T deg) {
return AngleT<T>(deg);
}
template<typename T>
inline T AngleT<T>::degrees() const {
return T(*this);
}
template<typename T>
inline T AngleT<T>::degrees0() const {
return Math::atan2d(_s, _c);
}
template<typename T>
inline AngleT<T> AngleT<T>::radians(T rad) {
using std::sin, std::cos, std::atan2, std::rint;
T sn = sin(rad), cs = cos(rad);
return AngleT<T>(sn, cs, rint( (rad - atan2(sn, cs)) / (2 * Math::pi()) ),
true);
}
template<typename T>
inline T AngleT<T>::radians() const {
T r = radians0();
// Preserve sign of +/-0
return _n == 0 ? r : r + 2 * Math::pi() * _n;
}
template<typename T>
inline T AngleT<T>::radians0() const {
using std::atan2;
return atan2(_s, _c);
}
template<typename T>
inline AngleT<T> AngleT<T>::lam(T psi) {
using std::sinh;
return AngleT<T>(sinh(psi), 1, 0);
}
template<typename T>
inline T AngleT<T>::lam() const {
using std::asinh;
return asinh(t());
}
template<typename T>
inline AngleT<T> AngleT<T>::NaN() {
return AngleT<T>(Math::NaN(), Math::NaN(), 0, true);
}
template<typename T>
inline T AngleT<T>::ncardinal() const {
using std::signbit, std::fabs;
int iq = (signbit(_s) ? -1 : 1) * (signbit(_c) ?
( -_c >= fabs(_s) ? 2 : 1 ) :
( _c >= fabs(_s) ? 0 : 1 ));
return 4 * _n + iq;
}
template<typename T>
inline AngleT<T> AngleT<T>::eps() {
return AngleT<T>(std::numeric_limits<T>::epsilon() / (1 << 20), 1, 0, true);
}
// AngleT<T> AngleT<T>::operator+() const { return *this; }
template<typename T>
inline AngleT<T> AngleT<T>::operator-() const {
return AngleT<T>(-_s, _c, -_n, true);
}
template<typename T>
inline AngleT<T>& AngleT<T>::operator+=(const AngleT<T>& p) {
using std::rint;
T q = ncardinal() + p.ncardinal();
T c = _c * p._c - _s * p._s;
_s = _s * p._c + _c * p._s;
_c = c;
_n += p._n;
q -= ncardinal();
_n += rint(q / 4);
return *this;
}
template<typename T>
inline AngleT<T> AngleT<T>::operator+(const AngleT<T>& p) const {
AngleT<T> t = *this; t += p;
return t;
}
template<typename T>
inline AngleT<T>& AngleT<T>::operator-=(const AngleT<T>& p) {
*this += -p;
return *this;
}
template<typename T>
inline AngleT<T> AngleT<T>::operator-(const AngleT<T>& p) const {
AngleT<T> t = *this; t -= p;
return t;
}
template<typename T>
inline bool AngleT<T>::zerop(T mult) const {
using std::fabs;
return _n == 0 &&_c > 0 &&
fabs(_s) <= mult * std::numeric_limits<T>::epsilon();
}
template<typename T>
inline bool AngleT<T>::operator==(const AngleT<T>& p) const {
AngleT<T> t = *this; t -= p;
return t.zerop();
}
template<typename T>
inline AngleT<T>& AngleT<T>::round() {
_s = rnd(_s); _c = rnd(_c);
return *this;
}
template<typename T>
inline AngleT<T> AngleT<T>::base() const {
return AngleT<T>(_s, _c, 0, true);
}
template<typename T>
inline AngleT<T> AngleT<T>::rebase(const AngleT<T>& c) const {
// This is exact for c = cardinal direction
// return (*this - c).base() + c;
AngleT<T> t = *this;
return t.setn0(((*this - c).base() + c).n0());
}
template<typename T>
inline AngleT<T>& AngleT<T>::renormalize() {
using std::hypot;
T h = hypot(_s, _c); _s /= h; _c /= h;
return *this;
}
template<typename T>
inline AngleT<T>& AngleT<T>::setn(T n) {
using std::rint;
_n = rint(n);
return *this;
}
template<typename T>
inline T AngleT<T>::n0() const {
using std::signbit;
return (_n - (_s == 0 && signbit(_s) && _c < 0 ? 1 : 0)) + 0;
}
template<typename T>
inline AngleT<T>& AngleT<T>::setn0(T n) {
using std::rint, std::signbit;
_n = rint(n) + (_s == 0 && signbit(_s) && _c < 0 ? 1 : 0);
return *this;
}
template<typename T>
inline AngleT<T>& AngleT<T>::setquadrant(unsigned q) {
using std::copysign;
_s = copysign(_s, T( q & 2U ? -1 : 1 ));
_c = copysign(_c, T( ((q >> 1) ^ q) & 1U ? -1 : 1 ));
return *this;
}
template<typename T>
inline unsigned AngleT<T>::quadrant() const {
using std::signbit;
return 2U * signbit(_s) + (signbit(_c) ^ signbit(_s));
}
template<typename T>
inline AngleT<T>& AngleT<T>::reflect(bool flips, bool flipc, bool swapp) {
using std::swap;
if (flips) _s *= -1;
if (flipc) _c *= -1;
if (swapp) swap(_s, _c);
return *this;
}
template<typename T>
inline AngleT<T> AngleT<T>::flipsign(T mult) const {
using std::signbit;
return signbit(mult) ? -*this : *this;
}
template<typename T>
inline AngleT<T> AngleT<T>::modang(T m) const {
using std::signbit;
return signbit(m) ? AngleT<T>::NaN() :
// Avoid nans if m == inf.
AngleT<T>( _s * (m > 1 ? 1 : m),
_c / (m > 1 ? m : 1),
_n );
}
template<typename T>
inline AngleT<T> AngleT<T>::cardinal(T q) {
using std::isfinite, std::rint, std::remainder;
if (!isfinite(q)) return AngleT<T>::NaN();
q = rint(q);
int iq = int(remainder(q, T(4)));
// iq is in [-2, 2];
// We could fold iq = -2 to iq = 2; but this way works too.
T s, c, z = 0;
switch (iq) {
case -2: s = -z; c = -1; break;
case -1: s = -1; c = z; break;
case 1: s = 1; c = z; break;
case 2: s = z; c = -1; break;
default:
// iq = 0, but distinguish q = +/-0
s = q != 0 ? z : q; c = 1;
break;
}
return AngleT<T>(s, c, rint((q - iq) / 4), true);
}
template<typename T>
inline AngleT<T> AngleT<T>::nearest(unsigned ind) const {
using std::fabs, std::copysign;
T s, c;
if (ind == 0U) {
if (fabs(_c) >= fabs(_s)) {
s = copysign(T(0), _s); c = copysign(T(1), _c);
} else {
s = copysign(T(1), _s); c = copysign(T(0), _c);
}
} else if ((ind & 1U) == 0U) { // ind nonzero and even
s = copysign(T(0), _s); c = copysign(T(1), _c);
} else { // ind odd
s = copysign(T(1), _s); c = copysign(T(0), _c);
}
return AngleT<T>(s, c, _n, true);
}
using Angle = AngleT<Math::real>;
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_ANGLE_HPP
|