1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
/**
* \file Constants.hpp
* \brief Header for GeographicLib::Constants class
*
* Copyright (c) Charles Karney (2008-2024) <karney@alum.mit.edu> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_CONSTANTS_HPP)
#define GEOGRAPHICLIB_CONSTANTS_HPP 1
#include <GeographicLib/Config.h>
/**
* @relates GeographicLib::Constants
* Pack the version components into a single integer. Users should not rely on
* this particular packing of the components of the version number; see the
* documentation for GEOGRAPHICLIB_VERSION, below.
**********************************************************************/
#define GEOGRAPHICLIB_VERSION_NUM(a,b,c) ((((a) * 10000 + (b)) * 100) + (c))
/**
* @relates GeographicLib::Constants
* The version of GeographicLib as a single integer, packed as MMmmmmpp where
* MM is the major version, mmmm is the minor version, and pp is the patch
* level. Users should not rely on this particular packing of the components
* of the version number. Instead they should use a test such as \code
#if GEOGRAPHICLIB_VERSION >= GEOGRAPHICLIB_VERSION_NUM(1,37,0)
...
#endif
* \endcode
**********************************************************************/
#define GEOGRAPHICLIB_VERSION \
GEOGRAPHICLIB_VERSION_NUM(GEOGRAPHICLIB_VERSION_MAJOR, \
GEOGRAPHICLIB_VERSION_MINOR, \
GEOGRAPHICLIB_VERSION_PATCH)
// For reference, here is a table of Visual Studio and _MSC_VER
// correspondences:
//
// _MSC_VER Visual Studio
// 1900 vc14 (2015) First version of VS to include enough C++11 support
// 191[0-6] vc15 (2017) First version of VS to include enough C++17 support
// 192[0-9] vc16 (2019)
// 1930-1944 vc17 (2022)
// vc18 (2026)
#if defined(_MSC_VER) && defined(GEOGRAPHICLIB_SHARED_LIB) && \
GEOGRAPHICLIB_SHARED_LIB
# if GEOGRAPHICLIB_SHARED_LIB > 1
# error GEOGRAPHICLIB_SHARED_LIB must be 0 or 1
# elif defined(GeographicLib_SHARED_EXPORTS)
# define GEOGRAPHICLIB_EXPORT __declspec(dllexport)
# else
# define GEOGRAPHICLIB_EXPORT __declspec(dllimport)
# endif
#else
# define GEOGRAPHICLIB_EXPORT
#endif
#include <stdexcept>
#include <string>
#include <GeographicLib/Math.hpp>
/**
* \brief Namespace for %GeographicLib
*
* All of %GeographicLib is defined within the GeographicLib namespace. In
* addition all the header files are included via GeographicLib/Class.hpp.
* This minimizes the likelihood of conflicts with other packages.
**********************************************************************/
namespace GeographicLib {
/**
* \brief %Constants needed by %GeographicLib
*
* Define constants specifying the WGS84 ellipsoid, the UTM and UPS
* projections, and various unit conversions.
*
* Example of use:
* \include example-Constants.cpp
**********************************************************************/
class GEOGRAPHICLIB_EXPORT Constants {
private:
typedef Math::real real;
Constants() = delete; // Disable constructor
public:
/**
* A synonym for Math::degree<real>().
**********************************************************************/
static Math::real degree() { return Math::degree(); }
/**
* @return the number of radians in an arcminute.
**********************************************************************/
static Math::real arcminute()
{ return Math::degree() / Math::dm; }
/**
* @return the number of radians in an arcsecond.
**********************************************************************/
static Math::real arcsecond()
{ return Math::degree() / Math::ds; }
/** \name Ellipsoid parameters
**********************************************************************/
///@{
/**
* @tparam T the type of the returned value.
* @return the equatorial radius of WGS84 ellipsoid (6378137 m).
**********************************************************************/
template<typename T = real> static T WGS84_a()
{ return 6378137 * meter<T>(); }
/**
* @tparam T the type of the returned value.
* @return the flattening of WGS84 ellipsoid (1/298.257223563).
**********************************************************************/
template<typename T = real> static T WGS84_f() {
// Evaluating this as 1000000000 / T(298257223563LL) reduces the
// round-off error by about 10%. However, expressing the flattening as
// 1/298.257223563 is well ingrained.
return 1 / ( T(298257223563LL) / 1000000000 );
}
/**
* @tparam T the type of the returned value.
* @return the gravitational constant of the WGS84 ellipsoid, \e GM, in
* m<sup>3</sup> s<sup>−2</sup>.
**********************************************************************/
template<typename T = real> static T WGS84_GM()
{ return T(3986004) * 100000000 + 41800000; }
/**
* @tparam T the type of the returned value.
* @return the angular velocity of the WGS84 ellipsoid, ω, in rad
* s<sup>−1</sup>.
**********************************************************************/
template<typename T = real> static T WGS84_omega()
{ return 7292115 / (T(1000000) * 100000); }
/**
* @tparam T the type of the returned value.
* @return the equatorial radius of GRS80 ellipsoid, \e a, in m.
**********************************************************************/
template<typename T = real> static T GRS80_a()
{ return 6378137 * meter<T>(); }
/**
* @tparam T the type of the returned value.
* @return the gravitational constant of the GRS80 ellipsoid, \e GM, in
* m<sup>3</sup> s<sup>−2</sup>.
**********************************************************************/
template<typename T = real> static T GRS80_GM()
{ return T(3986005) * 100000000; }
/**
* @tparam T the type of the returned value.
* @return the angular velocity of the GRS80 ellipsoid, ω, in rad
* s<sup>−1</sup>.
*
* This is about 2 π 366.25 / (365.25 × 24 × 3600) rad
* s<sup>−1</sup>. 365.25 is the number of days in a Julian year and
* 365.35/366.25 converts from solar days to sidereal days. Using the
* number of days in a Gregorian year (365.2425) results in a worse
* approximation (because the Gregorian year includes the precession of the
* earth's axis).
**********************************************************************/
template<typename T = real> static T GRS80_omega()
{ return 7292115 / (T(1000000) * 100000); }
/**
* @tparam T the type of the returned value.
* @return the dynamical form factor of the GRS80 ellipsoid,
* <i>J</i><sub>2</sub>.
**********************************************************************/
template<typename T = real> static T GRS80_J2()
{ return T(108263) / 100000000; }
/**
* @tparam T the type of the returned value.
* @return the central scale factor for UTM (0.9996).
**********************************************************************/
template<typename T = real> static T UTM_k0()
{return T(9996) / 10000; }
/**
* @tparam T the type of the returned value.
* @return the central scale factor for UPS (0.994).
**********************************************************************/
template<typename T = real> static T UPS_k0()
{ return T(994) / 1000; }
///@}
/** \name Triaxial ellipsoid parameters
*
* These parameters are close to the values given by Milan Bursa, Vladimira
* Fialova, "Parameters of the Earth's tri-axial level ellipsoid", Studia
* Geophysica et Geodaetica 37(1), 1-13 (1993).
* - longitude of major axis = −14.93° ± 0.05°
* - \e a = 6378171.36 m ± 0.30 m
* - \e a / (\e a − \e c) = 297.7738 ± 0.0003
* - \e a / (\e a − \e b) = 91449 ± 60
* .
* which gives: \e a = 6378171.36 m, \e b = 6378101.61 m, \e c = 6356751.84
* m. Here take the semiaxes to be whole numbers of meters, with (\e a +
* \e b)/2 = WGS84_a(), \e a − \e b = 70 m, \e c = round(WGS84_a() *
* (1 - WGS84_f())). This gives
* - \e a = 6378172 m
* - \e b = 6378102 m
* - \e c = 6356752 m
* - \e lon0 = −14.93°
**********************************************************************/
///@{
/**
* @tparam T the type of the returned value.
* @return the major semiaxis of a triaxial approximation to the Earth, \e
* a, in m (= 6378172).
**********************************************************************/
template<typename T = real> static T Triaxial_Earth_a()
{ return WGS84_a<T>() + 70/real(2); }
/**
* @tparam T the type of the returned value.
* @return the median semiaxis of a triaxial approximation to the Earth, \e
* b, in m (= 6378102).
**********************************************************************/
template<typename T = real> static T Triaxial_Earth_b()
{ return WGS84_a<T>() - 70/real(2); }
/**
* @tparam T the type of the returned value.
* @return the minor semiaxis of a triaxial approximation to the Earth, \e
* c, in m (= 6356752).
**********************************************************************/
template<typename T = real> static T Triaxial_Earth_c()
{ using std::round; return round(WGS84_a<T>() * (1 - WGS84_f())); }
/**
* @tparam T the type of the returned value.
* @return the longitude, with respect to Greenwich, of the major semiaxis
* of of a triaxial approximation to the Earth, \e lon0, in degrees (=
* −14.93).
**********************************************************************/
template<typename T = real> static T Triaxial_Earth_lon0()
{ return T(1493) / 100; }
///@}
/** \name SI units
**********************************************************************/
///@{
/**
* @tparam T the type of the returned value.
* @return the number of meters in a meter.
*
* This is unity, but this lets the internal system of units be changed if
* necessary.
**********************************************************************/
template<typename T = real> static T meter() { return T(1); }
/**
* @return the number of meters in a kilometer.
**********************************************************************/
static Math::real kilometer()
{ return 1000 * meter<real>(); }
/**
* @return the number of meters in a nautical mile (approximately 1 arc
* minute)
**********************************************************************/
static Math::real nauticalmile()
{ return 1852 * meter<real>(); }
/**
* @tparam T the type of the returned value.
* @return the number of square meters in a square meter.
*
* This is unity, but this lets the internal system of units be changed if
* necessary.
**********************************************************************/
template<typename T = real> static T square_meter()
{ return meter<T>() * meter<T>(); }
/**
* @return the number of square meters in a hectare.
**********************************************************************/
static Math::real hectare()
{ return 10000 * square_meter<real>(); }
/**
* @return the number of square meters in a square kilometer.
**********************************************************************/
static Math::real square_kilometer()
{ return kilometer() * kilometer(); }
/**
* @return the number of square meters in a square nautical mile.
**********************************************************************/
static Math::real square_nauticalmile()
{ return nauticalmile() * nauticalmile(); }
///@}
/** \name Anachronistic British units
**********************************************************************/
///@{
/**
* @return the number of meters in an international foot.
**********************************************************************/
static Math::real foot()
{ return real(254 * 12) / 10000 * meter<real>(); }
/**
* @return the number of meters in a yard.
**********************************************************************/
static Math::real yard() { return 3 * foot(); }
/**
* @return the number of meters in a fathom.
**********************************************************************/
static Math::real fathom() { return 2 * yard(); }
/**
* @return the number of meters in a chain.
**********************************************************************/
static Math::real chain() { return 22 * yard(); }
/**
* @return the number of meters in a furlong.
**********************************************************************/
static Math::real furlong() { return 10 * chain(); }
/**
* @return the number of meters in a statute mile.
**********************************************************************/
static Math::real mile() { return 8 * furlong(); }
/**
* @return the number of square meters in an acre.
**********************************************************************/
static Math::real acre() { return chain() * furlong(); }
/**
* @return the number of square meters in a square statute mile.
**********************************************************************/
static Math::real square_mile() { return mile() * mile(); }
///@}
/** \name Anachronistic US units
**********************************************************************/
///@{
/**
* @return the number of meters in a US survey foot.
**********************************************************************/
static Math::real surveyfoot()
{ return real(1200) / 3937 * meter<real>(); }
///@}
};
/**
* \brief Exception handling for %GeographicLib
*
* A class to handle exceptions. It's derived from std::runtime_error so it
* can be caught by the usual catch clauses.
*
* Example of use:
* \include example-GeographicErr.cpp
**********************************************************************/
class GeographicErr : public std::runtime_error {
public:
/**
* Constructor
*
* @param[in] msg a string message, which is accessible in the catch
* clause via what().
**********************************************************************/
GeographicErr(const std::string& msg) : std::runtime_error(msg) {}
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_CONSTANTS_HPP
|