1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
|
/**
* \file Intersect.hpp
* \brief Header for GeographicLib::Intersect class
*
* Copyright (c) Charles Karney (2023-2024) <karney@alum.mit.edu> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_INTERSECT_HPP)
#define GEOGRAPHICLIB_INTERSECT_HPP 1
#include <vector>
#include <set>
#include <GeographicLib/Math.hpp>
#include <GeographicLib/Geodesic.hpp>
#include <GeographicLib/GeodesicLine.hpp>
namespace GeographicLib {
/**
* \brief %Geodesic intersections
*
* Find the intersections of two geodesics \e X and \e Y. Four calling
* sequences are supported.
* - The geodesics are defined by a position (latitude and longitude) and an
* azimuth. In this case the \e closest intersection is found.
* - The geodesics are defined by two endpoints. The intersection of the two
* segments is found. If they don't intersect, then the closest
* intersection is returned.
* - The geodesics are defined as an intersection point, a single position
* and two azimuths. In this case, the next closest intersection is found.
* - The geodesics are defined as in the first case and all intersection
* within a specified distance are returned.
* .
* In all cases the position of the intersection is given by the signed
* displacements \e x and \e y along the geodesics from the starting point
* (the first point in the case of a geodesic segment). The closest
* itersection is defined as the one that minimizes the L1 distance,
* Intersect::Dist([<i>x</i>, <i>y</i>) = |<i>x</i>| + |<i>y</i>|.
*
* The routines also optionally return a coincidence indicator \e c. This is
* typically 0. However if the geodesics lie on top of one another at the
* point of intersection, then \e c is set to +1, if they are parallel, and
* −1, if they are antiparallel.
*
* Example of use:
* \include example-Intersect.cpp
*
* <a href="IntersectTool.1.html">IntersectTool</a> is a command-line utility
* providing access to the functionality of this class.
*
* This solution for intersections is described in
* - C. F. F. Karney,<br>
* <a href="https://doi.org/10.1061/JSUED2.SUENG-1483">
* Geodesic intersections</a>,
* J. Surveying Eng. <b>150</b>(3), 04024005:1--9 (2024);
* preprint
* <a href="https://arxiv.org/abs/2308.00495">arxiv:2308.00495</a>.
* .
* It is based on the work of
* - S. Baseldga and J. C. Martinez-Llario,
* <a href="https://doi.org/10.1007/s11200-017-1020-z">
* Intersection and point-to-line solutions for geodesics
* on the ellipsoid</a>,
* Stud. Geophys. Geod. <b>62</b>, 353--363 (2018);
* DOI: <a href="https://doi.org/10.1007/s11200-017-1020-z">
* 10.1007/s11200-017-1020-z</a>.
**********************************************************************/
class GEOGRAPHICLIB_EXPORT Intersect {
private:
typedef Math::real real;
public:
/**
* The type used to hold the two displacement along the geodesics. This is
* just a std::pair with \e x = \e first and \e y = \e second.
**********************************************************************/
typedef std::pair<Math::real, Math::real> Point;
/**
* The minimum capabilities for GeodesicLine objects which are passed to
* this class.
**********************************************************************/
static const unsigned LineCaps = Geodesic::LATITUDE | Geodesic::LONGITUDE |
Geodesic::AZIMUTH | Geodesic::REDUCEDLENGTH | Geodesic::GEODESICSCALE |
Geodesic::DISTANCE_IN;
private:
static const int numit_ = 100;
const Geodesic _geod;
real _a, _f, // equatorial radius, flattening
_rR, // authalic radius
_d, // pi*_rR
_eps, // criterion for intersection + coincidence
_tol, // convergence for Newton in Solve1
_delta, // for equality tests, safety margin for tiling
_t1, // min distance between intersections
_t2, // furthest dist to closest intersection
_t3, // 1/2 furthest min dist to next intersection
_t4, // capture radius for spherical sol in Solve0
_t5, // longest shortest geodesic
_d1, // tile spacing for Closest
_d2, // tile spacing for Next
_d3; // tile spacing for All
// The L1 distance
static Math::real d1(Math::real x, Math::real y)
{ using std::fabs; return fabs(x) + fabs(y); }
// An internal version of Point with a little more functionality
class XPoint {
public:
real x, y;
int c;
XPoint(Math::real x, Math::real y, int c = 0)
: x(x), y(y), c(c)
{}
XPoint()
: x(Math::NaN()), y(Math::NaN()), c(0)
{}
XPoint(const Point& p)
: x(p.first), y(p.second), c(0)
{}
XPoint& operator+=(const XPoint& p) {
x += p.x; y += p.y;
if (p.c) c = p.c; // pass along a nonzero c from either operand
return *this;
}
XPoint operator+(const XPoint& p) const {
XPoint t = *this; t += p; return t;
}
Math::real Dist() const { return d1(x, y); }
Math::real Dist(const XPoint& p) const { return d1(x - p.x, y - p.y); }
Point data() const { return Point(x, y); }
};
// Comparing XPoints for insertions into sets, but ensure that close
// XPoints test equal.
class GEOGRAPHICLIB_EXPORT SetComp {
private:
const real _delta;
public:
SetComp(Math::real delta) : _delta(delta) {}
bool eq(const XPoint& p, const XPoint& q) const {
return d1(p.x - q.x, p.y - q.y) <= _delta;
}
bool operator()(const XPoint& p, const XPoint& q) const {
return !eq(p, q) && ( p.x != q.x ? p.x < q.x : p.y < q.y );
}
};
SetComp _comp;
// For ranking XPoints by closeness
class RankPoint {
private:
const real _x, _y;
public:
RankPoint(const Point& p0) : _x(p0.first), _y(p0.second) {}
RankPoint(const XPoint& p0) : _x(p0.x), _y(p0.y) {}
bool operator()(const XPoint& p, const XPoint& q) const {
real dp = d1(p.x - _x, p.y - _y),
dq = d1(q.x - _x, q.y - _y);
return dp != dq ? (dp < dq) :
(p.x != q.x ? (p.x < q.x) : (p.y < q.y));
}
};
// The spherical solution
XPoint Spherical(const GeodesicLine& lineX, const GeodesicLine& lineY,
const XPoint& p) const;
// The basic algorithm
XPoint Basic(const GeodesicLine& lineX, const GeodesicLine& lineY,
const XPoint& p0) const;
// The closest intersecton
XPoint ClosestInt(const GeodesicLine& lineX, const GeodesicLine& lineY,
const XPoint& p0) const;
// The next intersecton
XPoint NextInt(const GeodesicLine& lineX, const GeodesicLine& lineY) const;
// Segment intersecton
XPoint SegmentInt(const GeodesicLine& lineX, const GeodesicLine& lineY,
int& segmode) const;
// All intersectons
std::vector<XPoint>
AllInt0(const GeodesicLine& lineX, const GeodesicLine& lineY,
Math::real maxdist, const XPoint& p0) const;
std::vector<Point>
AllInternal(const GeodesicLine& lineX, const GeodesicLine& lineY,
Math::real maxdist, const Point& p0,
std::vector<int>& c, bool cp) const;
// Find {semi-,}conjugate point which is close to s3. Optional m12, M12,
// M21 use {semi-,}conjugacy relative to point 2
Math::real ConjugateDist(const GeodesicLine& line, Math::real s3, bool semi,
Math::real m12 = 0, Math::real M12 = 1,
Math::real M21 = 1) const;
Math::real distpolar(Math::real lat1, Math::real* lat2 = nullptr) const;
Math::real polarb(Math::real* lata = nullptr, Math::real* latb = nullptr)
const;
Math::real conjdist(Math::real azi, Math::real* ds = nullptr,
Math::real* sp = nullptr, Math::real* sm = nullptr)
const;
Math::real distoblique(Math::real* azi = nullptr, Math::real* sp = nullptr,
Math::real* sm = nullptr) const;
// p is intersection point on coincident lines orientation = c; p0 is
// origin point. Change p to center point wrt p0, i.e, abs((p-p0)_x) =
// abs((p-p0)_y)
static XPoint fixcoincident(const XPoint& p0, const XPoint& p);
static XPoint fixcoincident(const XPoint& p0, const XPoint& p, int c);
static XPoint fixsegment(Math::real sx, Math::real sy, const XPoint& p);
static int segmentmode(Math::real sx, Math::real sy, const XPoint& p) {
return (p.x < 0 ? -1 : p.x <= sx ? 0 : 1) * 3
+ (p.y < 0 ? -1 : p.y <= sy ? 0 : 1);
}
mutable long long _cnt0, _cnt1, _cnt2, _cnt3, _cnt4;
public:
/** \name Constructor
**********************************************************************/
///@{
/**
* Constructor for an ellipsoid with
*
* @param[in] geod a Geodesic object. This sets the parameters \e a and \e
* f for the ellipsoid.
* @exception GeographicErr if the eccentricity of the elliposdoid is too
* large.
*
* \note This class has been validated for -1/4 ≤ \e f ≤ 1/5. It may
* give satisfactory results slightly outside this range; however
* sufficient far outside the range, some internal checks will fail and an
* exception thrown.
*
* \note If |<i>f</i>| > 1/50, then the Geodesic object should be
* constructed with \e exact = true.
**********************************************************************/
Intersect(const Geodesic& geod);
///@}
/** \name Finding intersections
**********************************************************************/
///@{
/**
* Find the closest intersection point, with each geodesic specified by
* position and azimuth.
*
* @param[in] latX latitude of starting point for geodesic \e X (degrees).
* @param[in] lonX longitude of starting point for geodesic \e X (degrees).
* @param[in] aziX azimuth at starting point for geodesic \e X (degrees).
* @param[in] latY latitude of starting point for geodesic \e Y (degrees).
* @param[in] lonY longitude of starting point for geodesic \e Y (degrees).
* @param[in] aziY azimuth at starting point for geodesic \e Y (degrees).
* @param[in] p0 an optional offset for the starting points (meters),
* default = [0,0].
* @param[out] c optional pointer to an integer coincidence indicator.
* @return \e p the intersection point closest to \e p0.
*
* The returned intersection minimizes Intersect::Dist(\e p, \e p0).
**********************************************************************/
Point Closest(Math::real latX, Math::real lonX, Math::real aziX,
Math::real latY, Math::real lonY, Math::real aziY,
const Point& p0 = Point(0, 0), int* c = nullptr) const;
/**
* Find the closest intersection point, with each geodesic given as a
* GeodesicLine.
*
* @param[in] lineX geodesic \e X.
* @param[in] lineY geodesic \e Y.
* @param[in] p0 an optional offset for the starting points (meters),
* default = [0,0].
* @param[out] c optional pointer to an integer coincidence indicator.
* @return \e p the intersection point closest to \e p0.
*
* The returned intersection minimizes Intersect::Dist(\e p, \e p0).
*
* \note \e lineX and \e lineY should be created with minimum capabilities
* Intersect::LineCaps. The methods for creating a GeodesicLine include
* all these capabilities by default.
**********************************************************************/
Point Closest(const GeodesicLine& lineX, const GeodesicLine& lineY,
const Point& p0 = Point(0, 0), int* c = nullptr) const;
/**
* Find the intersection of two geodesic segments defined by their
* endpoints.
*
* @param[in] latX1 latitude of first point for segment \e X (degrees).
* @param[in] lonX1 longitude of first point for segment \e X (degrees).
* @param[in] latX2 latitude of second point for segment \e X (degrees).
* @param[in] lonX2 longitude of second point for segment \e X (degrees).
* @param[in] latY1 latitude of first point for segment \e Y (degrees).
* @param[in] lonY1 longitude of first point for segment \e Y (degrees).
* @param[in] latY2 latitude of second point for segment \e Y (degrees).
* @param[in] lonY2 longitude of second point for segment \e Y (degrees).
* @param[out] segmode an indicator equal to zero if the segments
* intersect (see below).
* @param[out] c optional pointer to an integer coincidence indicator.
* @return \e p the intersection point if the segments intersect, otherwise
* the intersection point closest to the midpoints of the two
* segments.
*
* \warning The results are only well defined if there's a \e unique
* shortest geodesic between the endpoints of the two segments.
*
* \e segmode codes up information about the closest intersection in the
* case where the segments intersect. Let <i>x</i><sub>12</sub> be the
* length of the segment \e X and \e x = <i>p</i>.first, the position of
* the intersection on segment \e X. Define
* - \e k<sub><i>x</i></sub> = −1, if \e x < 0,
* - \e k<sub><i>x</i></sub> = 0,
* if 0 ≤ \e x ≤ <i>x</i><sub>12</sub>,
* - \e k<sub><i>x</i></sub> = 1, if <i>x</i><sub>12</sub> < \e x.
* .
* and similarly for segment \e Y. Then
* \e segmode = 3 \e k<sub><i>x</i></sub> + \e k<sub><i>y</i></sub>.
**********************************************************************/
Point Segment(Math::real latX1, Math::real lonX1,
Math::real latX2, Math::real lonX2,
Math::real latY1, Math::real lonY1,
Math::real latY2, Math::real lonY2,
int& segmode, int* c = nullptr) const;
/**
* Find the intersection of two geodesic segments each defined by a
* GeodesicLine.
*
* @param[in] lineX segment \e X.
* @param[in] lineY segment \e Y.
* @param[out] segmode an indicator equal to zero if the segments
* intersect (see below).
* @param[out] c optional pointer to an integer coincidence indicator.
* @return \e p the intersection point if the segments intersect, otherwise
* the intersection point closest to the midpoints of the two
* segments.
*
* \warning \e lineX and \e lineY must represent shortest geodesics, e.g.,
* they can be created by Geodesic::InverseLine. The results are only well
* defined if there's a \e unique shortest geodesic between the endpoints
* of the two segments.
*
* \note \e lineX and \e lineY should be created with minimum capabilities
* Intersect::LineCaps. The methods for creating a GeodesicLine include
* all these capabilities by default.
*
* See previous definition of Intersect::Segment for more information on \e
* segmode.
**********************************************************************/
Point Segment(const GeodesicLine& lineX, const GeodesicLine& lineY,
int& segmode, int* c = nullptr) const;
/**
* Find the next closest intersection point to a given intersection,
* specified by position and two azimuths.
*
* @param[in] latX latitude of starting points for geodesics \e X and \e Y
* (degrees).
* @param[in] lonX longitude of starting points for geodesics \e X and \e Y
* (degrees).
* @param[in] aziX azimuth at starting point for geodesic \e X (degrees).
* @param[in] aziY azimuth at starting point for geodesic \e Y (degrees).
* @param[out] c optional pointer to an integer coincidence indicator.
* @return \e p the next closest intersection point.
*
* The returned intersection minimizes Intersect::Dist(\e p) (excluding \e
* p = [0,0]).
*
* \note Equidistant closest intersections are surprisingly common. If
* this may be a problem, use Intersect::All with a sufficiently large \e
* maxdist to capture close intersections.
**********************************************************************/
Point Next(Math::real latX, Math::real lonX,
Math::real aziX, Math::real aziY, int* c = nullptr) const;
/**
* Find the next closest intersection point to a given intersection,
* with each geodesic specified a GeodesicLine.
*
* @param[in] lineX geodesic \e X.
* @param[in] lineY geodesic \e Y.
* @param[out] c optional pointer to an integer coincidence indicator.
* @return \e p the next closest intersection point.
*
* \warning \e lineX and \e lineY must both have the same starting point,
* i.e., the distance between [<i>lineX</i>.Latitude(),
* <i>lineX</i>.Longitude()] and [<i>lineY</i>.Latitude(),
* <i>lineY</i>.Longitude()] must be zero.
*
* \note \e lineX and \e lineY should be created with minimum capabilities
* Intersect::LineCaps. The methods for creating a GeodesicLine include
* all these capabilities by default.
*
* \note Equidistant closest intersections are surprisingly common. If
* this may be a problem, use Intersect::All with a sufficiently large \e
* maxdist to capture close intersections.
**********************************************************************/
Point Next(const GeodesicLine& lineX, const GeodesicLine& lineY,
int* c = nullptr) const;
///@}
/** \name Finding all intersections
**********************************************************************/
///@{
/**
* Find all intersections within a certain distance, with each geodesic
* specified by position and azimuth.
*
* @param[in] latX latitude of starting point for geodesic \e X (degrees).
* @param[in] lonX longitude of starting point for geodesic \e X (degrees).
* @param[in] aziX azimuth at starting point for geodesic \e X (degrees).
* @param[in] latY latitude of starting point for geodesic \e Y (degrees).
* @param[in] lonY longitude of starting point for geodesic \e Y (degrees).
* @param[in] aziY azimuth at starting point for geodesic \e Y (degrees).
* @param[in] maxdist the maximum distance for the returned intersections
* (meters).
* @param[out] c vector of coincidences.
* @param[in] p0 an optional offset for the starting points (meters),
* default = [0,0].
* @return \e plist a vector for the intersections closest to \e p0.
*
* Each intersection point satisfies Intersect::Dist(\e p, \e p0) ≤ \e
* maxdist. The vector of returned intersections is sorted on the distance
* from \e p0.
**********************************************************************/
std::vector<Point> All(Math::real latX, Math::real lonX, Math::real aziX,
Math::real latY, Math::real lonY, Math::real aziY,
Math::real maxdist, std::vector<int>& c,
const Point& p0 = Point(0, 0))
const;
/**
* Find all intersections within a certain distance, with each geodesic
* specified by position and azimuth. Don't return vector of
* coincidences.
*
* @param[in] latX latitude of starting point for geodesic \e X (degrees).
* @param[in] lonX longitude of starting point for geodesic \e X (degrees).
* @param[in] aziX azimuth at starting point for geodesic \e X (degrees).
* @param[in] latY latitude of starting point for geodesic \e Y (degrees).
* @param[in] lonY longitude of starting point for geodesic \e Y (degrees).
* @param[in] aziY azimuth at starting point for geodesic \e Y (degrees).
* @param[in] maxdist the maximum distance for the returned intersections
* (meters).
* @param[in] p0 an optional offset for the starting points (meters),
* default = [0,0].
* @return \e plist a vector for the intersections closest to \e p0.
*
* Each intersection point satisfies Intersect::Dist(\e p, \e p0) ≤ \e
* maxdist. The vector of returned intersections is sorted on the distance
* from \e p0.
**********************************************************************/
std::vector<Point> All(Math::real latX, Math::real lonX, Math::real aziX,
Math::real latY, Math::real lonY, Math::real aziY,
Math::real maxdist, const Point& p0 = Point(0, 0))
const;
/**
* Find all intersections within a certain distance, with each geodesic
* specified by a GeodesicLine.
*
* @param[in] lineX geodesic \e X.
* @param[in] lineY geodesic \e Y.
* @param[in] maxdist the maximum distance for the returned intersections
* (meters).
* @param[out] c vector of coincidences.
* @param[in] p0 an optional offset for the starting points (meters),
* default = [0,0].
* @return \e plist a vector for the intersections closest to \e p0.
*
* Each intersection point satisfies Intersect::Dist(\e p, \e p0) ≤ \e
* maxdist. The vector of returned intersections is sorted on the distance
* from \e p0.
*
* \note \e lineX and \e lineY should be created with minimum capabilities
* Intersect::LineCaps. The methods for creating a GeodesicLine include
* all these capabilities by default.
**********************************************************************/
std::vector<Point> All(const GeodesicLine& lineX, const GeodesicLine& lineY,
Math::real maxdist, std::vector<int>& c,
const Point& p0 = Point(0, 0))
const;
/**
* Find all intersections within a certain distance, with each geodesic
* specified by a GeodesicLine. Don't return vector or coincidences.
*
* @param[in] lineX geodesic \e X.
* @param[in] lineY geodesic \e Y.
* @param[in] maxdist the maximum distance for the returned intersections
* (meters).
* @param[in] p0 an optional offset for the starting points (meters),
* default = [0,0].
* @return \e plist a vector for the intersections closest to \e p0.
*
* Each intersection point satisfies Intersect::Dist(\e p, \e p0) ≤ \e
* maxdist. The vector of returned intersections is sorted on the distance
* from \e p0.
*
* \note \e lineX and \e lineY should be created with minimum capabilities
* Intersect::LineCaps. The methods for creating a GeodesicLine include
* all these capabilities by default.
**********************************************************************/
std::vector<Point> All(const GeodesicLine& lineX, const GeodesicLine& lineY,
Math::real maxdist, const Point& p0 = Point(0, 0))
const;
///@}
/** \name Diagnostic counters
**********************************************************************/
///@{
/**
* @return the cumulative number of invocations of **h**.
*
* This is a count of the number of times the spherical triangle needs to
* be solved. Each involves a call to Geodesic::Inverse and this is a good
* metric for the overall cost. This counter is set to zero by the
* constructor.
*
* \warning The counter is a mutable variable and so is not thread safe.
**********************************************************************/
long long NumInverse() const { return _cnt0; }
/**
* @return the cumulative number of invocations of **b**.
*
* This is a count of the number of invocations of the basic algorithm,
* which is used by all the intersection methods. This counter is set to
* zero by the constructor.
*
* \warning The counter is a mutable variable and so is not thread safe.
**********************************************************************/
long long NumBasic() const { return _cnt1; }
/**
* @return the number of times intersection point was changed in
* Intersect::Closest and Intersect::Next.
*
* If this counter is incremented by just 1 in Intersect::Closest, then the
* initial result of the basic algorithm was eventually accepted. This
* counter is set to zero by the constructor.
*
* \note This counter is also incremented by Intersect::Segment, which
* calls Intersect::Closest.
*
* \warning The counter is a mutable variable and so is not thread safe.
**********************************************************************/
long long NumChange() const { return _cnt2; }
/**
* @return the number of times a corner point is checked in
* Intersect::Segment.
*
* This counter is set to zero by the constructor.
*
* \warning The counter is a mutable variable and so is not thread safe.
**********************************************************************/
long long NumCorner() const { return _cnt3; }
/**
* @return the number of times a corner point is returned by
* Intersect::Segment.
*
* This counter is set to zero by the constructor.
*
* \note A conjecture is that a corner point never results in an
* intersection that overrides the intersection closest to the midpoints of
* the segments; i.e., NumCorner() always returns 0.
*
* \warning The counter is a mutable variable and so is not thread safe.
**********************************************************************/
long long NumOverride() const { return _cnt4; }
///@}
/** \name Insepctor function
**********************************************************************/
///@{
/**
* @return \e geod the Geodesic object used in the constructor.
*
* This can be used to query Geodesic::EquatorialRadius(),
* Geodesic::Flattening(), Geodesic::Exact(), and
* Geodesic::EllipsoidArea().
**********************************************************************/
const Geodesic& GeodesicObject() const { return _geod; }
///@}
/**
* The L1 distance.
*
* @param[in] p the position along geodesics \e X and \e Y.
* @param[in] p0 [optional] the reference position, default = [0, 0].
* @return the L1 distance of \e p from \e p0, i.e.,
* |<i>p</i><sub><i>x</i></sub> − <i>p0</i><sub><i>x</i></sub>| +
* |<i>p</i><sub><i>y</i></sub> − <i>p0</i><sub><i>y</i></sub>|.
**********************************************************************/
static Math::real Dist(const Point& p, const Point& p0 = Point(0, 0)) {
using std::fabs;
return fabs(p.first - p0.first) + fabs(p.second - p0.second);
}
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_INTERSECT_HPP
|