1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
|
/**
* \file Math.hpp
* \brief Header for GeographicLib::Math class
*
* Copyright (c) Charles Karney (2008-2024) <karney@alum.mit.edu> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
// Constants.hpp includes Math.hpp. Place this include outside Math.hpp's
// include guard to enforce this ordering.
#include <GeographicLib/Constants.hpp>
#if !defined(GEOGRAPHICLIB_MATH_HPP)
#define GEOGRAPHICLIB_MATH_HPP 1
#if !defined(GEOGRAPHICLIB_WORDS_BIGENDIAN)
# define GEOGRAPHICLIB_WORDS_BIGENDIAN 0
#endif
#if !defined(GEOGRAPHICLIB_HAVE_LONG_DOUBLE)
# define GEOGRAPHICLIB_HAVE_LONG_DOUBLE 0
#endif
#if !defined(GEOGRAPHICLIB_PRECISION)
/**
* The precision of floating point numbers used in %GeographicLib. 1 means
* float (single precision); 2 (the default) means double; 3 means long double;
* 4 is reserved for quadruple precision. Nearly all the testing has been
* carried out with doubles and that's the recommended configuration. In order
* for long double to be used, GEOGRAPHICLIB_HAVE_LONG_DOUBLE needs to be
* defined. Note that with Microsoft Visual Studio, long double is the same as
* double.
**********************************************************************/
# define GEOGRAPHICLIB_PRECISION 2
#endif
#include <cmath>
#include <algorithm>
#include <limits>
#if GEOGRAPHICLIB_PRECISION == 4
# include <memory>
# include <boost/version.hpp>
# include <boost/multiprecision/float128.hpp>
# include <boost/math/special_functions.hpp>
#elif GEOGRAPHICLIB_PRECISION >= 5
# if GEOGRAPHICLIB_PRECISION > 5
# define MPREAL_FIXED_PRECISION GEOGRAPHICLIB_PRECISION
# else
# define MPREAL_FIXED_PRECISION 0
# endif
# include <mpreal.h>
#endif
#if GEOGRAPHICLIB_PRECISION > 3
// volatile keyword makes no sense for multiprec types
# define GEOGRAPHICLIB_VOLATILE
// Signal a convergence failure with multiprec types by throwing an exception
// at loop exit.
# define GEOGRAPHICLIB_PANIC(msg) \
(throw GeographicLib::GeographicErr(msg), false)
#else
# define GEOGRAPHICLIB_VOLATILE volatile
// Ignore convergence failures with standard floating points types by allowing
// loop to exit cleanly.
# define GEOGRAPHICLIB_PANIC(msg) false
#endif
namespace GeographicLib {
/**
* \brief Mathematical functions needed by %GeographicLib
*
* Define mathematical functions in order to localize system dependencies and
* to provide generic versions of the functions. In addition define a real
* type to be used by %GeographicLib.
*
* Example of use:
* \include example-Math.cpp
**********************************************************************/
class GEOGRAPHICLIB_EXPORT Math {
private:
void dummy(); // Static check for GEOGRAPHICLIB_PRECISION
Math() = delete; // Disable constructor
public:
#if GEOGRAPHICLIB_HAVE_LONG_DOUBLE
/**
* The extended precision type for real numbers, used for some testing.
* This is long double on computers with this type; otherwise it is double.
**********************************************************************/
typedef long double extended;
#else
typedef double extended;
#endif
#if GEOGRAPHICLIB_PRECISION == 2
/**
* The real type for %GeographicLib. Nearly all the testing has been done
* with \e real = double. However, the algorithms should also work with
* float and long double (where available). (<b>CAUTION</b>: reasonable
* accuracy typically cannot be obtained using floats.)
**********************************************************************/
typedef double real;
#elif GEOGRAPHICLIB_PRECISION == 1
typedef float real;
#elif GEOGRAPHICLIB_PRECISION == 3
typedef extended real;
#elif GEOGRAPHICLIB_PRECISION == 4
typedef boost::multiprecision::float128 real;
#elif GEOGRAPHICLIB_PRECISION >= 5
typedef mpfr::mpreal real;
#else
typedef double real;
#endif
/**
* The constants defining the standard (Babylonian) meanings of degrees,
* minutes, and seconds, for angles. Read the constants as follows (for
* example): \e ms = 60 is the ratio 1 minute / 1 second. The
* abbreviations are
* - \e t a whole turn (360°)
* - \e h a half turn (180°)
* - \e q a quarter turn (a right angle = 90°)
* - \e d a degree
* - \e m a minute
* - \e s a second
* .
* Note that degree() is ratio 1 degree / 1 radian, thus, for example,
* Math::degree() * Math::qd is the ratio 1 quarter turn / 1 radian =
* π/2.
*
* Defining all these in one place would mean that it's simple to convert
* to the centesimal system for measuring angles. The DMS class assumes
* that Math::dm and Math::ms are less than or equal to 100 (so that two
* digits suffice for the integer parts of the minutes and degrees
* components of an angle). Switching to the centesimal convention will
* break most of the tests. Also the normal definition of degree is baked
* into some classes, e.g., UTMUPS, MGRS, Georef, Geohash, etc.
**********************************************************************/
static inline constexpr int qd = 90; ///< degrees per quarter turn
static inline constexpr int dm = 60; ///< minutes per degree
static inline constexpr int ms = 60; ///< seconds per minute
static inline constexpr int hd = 2 * qd; ///< degrees per half turn
static inline constexpr int td = 2 * hd; ///< degrees per turn
static inline constexpr int ds = dm * ms; ///< seconds per degree
/**
* @return the number of bits of precision in a real number.
**********************************************************************/
static int digits();
/**
* Set the binary precision of a real number.
*
* @param[in] ndigits the number of bits of precision.
* @return the resulting number of bits of precision.
*
* This only has an effect when GEOGRAPHICLIB_PRECISION >= 5. See also
* Utility::set_digits for caveats about when this routine should be
* called. If GEOGRAPHICLIB_PRECISION > 5, the precision is set to the
* compile-time value of GEOGRAPHICLIB_PRECISION and \e ndigits is ignored.
**********************************************************************/
static int set_digits(int ndigits);
/**
* @return the number of decimal digits of precision in a real number.
**********************************************************************/
static int digits10();
/**
* Number of additional decimal digits of precision for real relative to
* double (0 for float).
**********************************************************************/
static int extra_digits();
/**
* true if the machine is big-endian.
**********************************************************************/
static const bool bigendian = GEOGRAPHICLIB_WORDS_BIGENDIAN;
/**
* @tparam T the type of the returned value.
* @return π.
**********************************************************************/
template<typename T = real> static T pi() {
using std::atan2;
static const T pi = atan2(T(0), T(-1));
return pi;
}
/**
* @tparam T the type of the returned value.
* @return the number of radians in a degree.
**********************************************************************/
template<typename T = real> static T degree() {
static const T degree = pi<T>() / T(hd);
return degree;
}
/**
* Square a number.
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @return <i>x</i><sup>2</sup>.
**********************************************************************/
template<typename T> static T sq(T x)
{ return x * x; }
/**
* Normalize a two-vector.
*
* @tparam T the type of the argument and the returned value.
* @param[in,out] x on output set to <i>x</i>/hypot(<i>x</i>, <i>y</i>).
* @param[in,out] y on output set to <i>y</i>/hypot(<i>x</i>, <i>y</i>).
**********************************************************************/
template<typename T> static void norm(T& x, T& y) {
#if defined(_MSC_VER) && _MSC_VER < 1950 && defined(_M_IX86)
// hypot for Visual Studio (A=win32) fails monotonicity, e.g., with
// x = 0.6102683302836215
// y1 = 0.7906090004346522
// y2 = y1 + 1e-16
// the test
// hypot(x, y2) >= hypot(x, y1)
// fails. Reported 2021-03-14:
// https://developercommunity.visualstudio.com/t/1369259
// See also:
// https://bugs.python.org/issue43088
// Bug still present in my version of vc17 (2022) updated on 2025-09-01.
// Let's hope it's fixed in vc18.
using std::sqrt; T h = sqrt(x * x + y * y);
#else
using std::hypot; T h = hypot(x, y);
#endif
x /= h; y /= h;
}
/**
* The error-free sum of two numbers.
*
* @tparam T the type of the argument and the returned value.
* @param[in] u
* @param[in] v
* @param[out] t the exact error given by (\e u + \e v) - \e s.
* @return \e s = round(\e u + \e v).
*
* See D. E. Knuth, TAOCP, Vol 2, 4.2.2, Theorem B.
*
* \note \e t can be the same as one of the first two arguments.
**********************************************************************/
template<typename T> static T sum(T u, T v, T& t);
/**
* Evaluate a polynomial.
*
* @tparam T the type of the arguments and returned value.
* @param[in] N the order of the polynomial.
* @param[in] p the coefficient array (of size \e N + 1) with
* <i>p</i><sub>0</sub> being coefficient of <i>x</i><sup><i>N</i></sup>.
* @param[in] x the variable.
* @return the value of the polynomial.
*
* Evaluate ∑<sub><i>n</i>=0..<i>N</i></sub>
* <i>p</i><sub><i>n</i></sub> <i>x</i><sup><i>N</i>−<i>n</i></sup>.
* Return 0 if \e N < 0. Return <i>p</i><sub>0</sub>, if \e N = 0 (even
* if \e x is infinite or a nan). The evaluation uses Horner's method.
**********************************************************************/
template<typename T> static T polyval(int N, const T p[], T x) {
// This used to employ Math::fma; but that's too slow and it seemed not
// to improve the accuracy noticeably. This might change when there's
// direct hardware support for fma.
T z = N < 0 ? 0 : *p++;
while (--N >= 0) z = z * x + *p++;
// To compute z = p(x) and dz = (p(y)-p(x))/(y-x) at the same time
// See Kahan + Fateman Sec 2.3. If y = x, dz = p'(x)
// T z = N < 0 ? 0 : *p++, dz = 0;
// while (--N >= 0) { dz = dz * y + p; z = z * x + *p++; }
return z;
}
/**
* Normalize an angle.
*
* @tparam T the type of the argument and returned value.
* @param[in] x the angle in degrees.
* @return the angle reduced to the range [−180°, 180°].
*
* The range of \e x is unrestricted. If the result is ±0° or
* ±180° then the sign is the sign of \e x.
**********************************************************************/
template<typename T> static T AngNormalize(T x);
/**
* Normalize a latitude.
*
* @tparam T the type of the argument and returned value.
* @param[in] x the angle in degrees.
* @return x if it is in the range [−90°, 90°], otherwise
* return NaN.
**********************************************************************/
template<typename T> static T LatFix(T x)
{ using std::fabs; return fabs(x) > T(qd) ? NaN<T>() : x; }
/**
* The exact difference of two angles reduced to
* [−180°, 180°].
*
* @tparam T the type of the arguments and returned value.
* @param[in] x the first angle in degrees.
* @param[in] y the second angle in degrees.
* @param[out] e the error term in degrees.
* @return \e d, the truncated value of \e y − \e x.
*
* This computes \e z = \e y − \e x exactly, reduced to
* [−180°, 180°]; and then sets \e z = \e d + \e e where \e d
* is the nearest representable number to \e z and \e e is the truncation
* error. If \e z = ±0° or ±180°, then the sign of
* \e d is given by the sign of \e y − \e x. The maximum absolute
* value of \e e is 2<sup>−26</sup> (for doubles).
**********************************************************************/
template<typename T> static T AngDiff(T x, T y, T& e);
/**
* Difference of two angles reduced to [−180°, 180°]
*
* @tparam T the type of the arguments and returned value.
* @param[in] x the first angle in degrees.
* @param[in] y the second angle in degrees.
* @return \e y − \e x, reduced to the range [−180°,
* 180°].
*
* The result is equivalent to computing the difference exactly, reducing
* it to [−180°, 180°] and rounding the result.
**********************************************************************/
template<typename T> static T AngDiff(T x, T y)
{ T e; return AngDiff(x, y, e); }
/**
* Coarsen a value close to zero.
*
* @tparam T the type of the argument and returned value.
* @param[in] x
* @return the coarsened value.
*
* The makes the smallest gap in \e x = 1/16 − nextafter(1/16, 0) =
* 1/2<sup>57</sup> for doubles = 0.8 pm on the earth if \e x is an angle
* in degrees. (This is about 2000 times more resolution than we get with
* angles around 90°.) We use this to avoid having to deal with near
* singular cases when \e x is non-zero but tiny (e.g.,
* 10<sup>−200</sup>). This sign of ±0 is preserved.
**********************************************************************/
template<typename T> static T AngRound(T x);
/**
* Evaluate the sine and cosine function with the argument in degrees
*
* @tparam T the type of the arguments.
* @param[in] x in degrees.
* @param[out] sinx sin(<i>x</i>).
* @param[out] cosx cos(<i>x</i>).
*
* The results obey exactly the elementary properties of the trigonometric
* functions, e.g., sin 9° = cos 81° = − sin 123456789°.
* If x = −0 or a negative multiple of 180°, then \e sinx =
* −0; this is the only case where −0 is returned.
**********************************************************************/
template<typename T> static void sincosd(T x, T& sinx, T& cosx);
/**
* Evaluate the sine and cosine with reduced argument plus correction
*
* @tparam T the type of the arguments.
* @param[in] x reduced angle in degrees.
* @param[in] t correction in degrees.
* @param[out] sinx sin(<i>x</i> + <i>t</i>).
* @param[out] cosx cos(<i>x</i> + <i>t</i>).
*
* This is a variant of Math::sincosd allowing a correction to the angle to
* be supplied. \e x must be in [−180°, 180°] and \e t is
* assumed to be a <i>small</i> correction. Math::AngRound is applied to
* the reduced angle to prevent problems with \e x + \e t being extremely
* close but not exactly equal to one of the four cardinal directions.
**********************************************************************/
template<typename T> static void sincosde(T x, T t, T& sinx, T& cosx);
/**
* Evaluate the sine function with the argument in degrees
*
* @tparam T the type of the argument and the returned value.
* @param[in] x in degrees.
* @return sin(<i>x</i>).
*
* The result is +0 for \e x = +0 and positive multiples of 180°. The
* result is −0 for \e x = -0 and negative multiples of 180°.
**********************************************************************/
template<typename T> static T sind(T x);
/**
* Evaluate the cosine function with the argument in degrees
*
* @tparam T the type of the argument and the returned value.
* @param[in] x in degrees.
* @return cos(<i>x</i>).
*
* The result is +0 for \e x an odd multiple of 90°.
**********************************************************************/
template<typename T> static T cosd(T x);
/**
* Evaluate the tangent function with the argument in degrees
*
* @tparam T the type of the argument and the returned value.
* @param[in] x in degrees.
* @return tan(<i>x</i>).
*
* If \e x is an odd multiple of 90°, then a suitably large (but
* finite) value is returned.
**********************************************************************/
template<typename T> static T tand(T x);
/**
* Evaluate the atan2 function with the result in degrees
*
* @tparam T the type of the arguments and the returned value.
* @param[in] y
* @param[in] x
* @return atan2(<i>y</i>, <i>x</i>) in degrees.
*
* The result is in the range [−180° 180°]. N.B.,
* atan2d(±0, −1) = ±180°.
**********************************************************************/
template<typename T> static T atan2d(T y, T x);
/**
* Evaluate the atan function with the result in degrees
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @return atan(<i>x</i>) in degrees.
**********************************************************************/
template<typename T> static T atand(T x);
/**
* Evaluate <i>e</i> atanh(<i>e x</i>)
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
* sqrt(|<i>e</i><sup>2</sup>|)
* @return <i>e</i> atanh(<i>e x</i>)
*
* If <i>e</i><sup>2</sup> is negative (<i>e</i> is imaginary), the
* expression is evaluated in terms of atan.
**********************************************************************/
template<typename T> static T eatanhe(T x, T es);
/**
* tanχ in terms of tanφ
*
* @tparam T the type of the argument and the returned value.
* @param[in] tau τ = tanφ
* @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
* sqrt(|<i>e</i><sup>2</sup>|)
* @return τ′ = tanχ
*
* See Eqs. (7--9) of
* C. F. F. Karney,
* <a href="https://doi.org/10.1007/s00190-011-0445-3">
* Transverse Mercator with an accuracy of a few nanometers,</a>
* J. Geodesy 85(8), 475--485 (Aug. 2011)
* (preprint
* <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>).
**********************************************************************/
template<typename T> static T taupf(T tau, T es);
/**
* tanφ in terms of tanχ
*
* @tparam T the type of the argument and the returned value.
* @param[in] taup τ′ = tanχ
* @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
* sqrt(|<i>e</i><sup>2</sup>|)
* @return τ = tanφ
*
* See Eqs. (19--21) of
* C. F. F. Karney,
* <a href="https://doi.org/10.1007/s00190-011-0445-3">
* Transverse Mercator with an accuracy of a few nanometers,</a>
* J. Geodesy 85(8), 475--485 (Aug. 2011)
* (preprint
* <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>).
**********************************************************************/
template<typename T> static T tauf(T taup, T es);
/**
* Implement hypot with 3 parameters
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @param[in] y
* @param[in] z
* @return sqrt(<i>x</i><sup>2</sup> + <i>y</i><sup>2</sup> +
* <i>z</i><sup>2</sup>).
**********************************************************************/
template<typename T> static T hypot3(T x, T y, T z);
/**
* Implement work-alike to C++17 clamp function
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @param[in] a
* @param[in] b
* @return \e x if it lies in [<i>a</i>, <i>b</i>]; otherise return the
* nearest boundary value.
*
* Requires \e a ≤ \e b. Unlike std::clamp, \e x can be a NaN (and
* this is then returned).
**********************************************************************/
template<typename T> static T clamp(T x, T a, T b);
/**
* The NaN (not a number)
*
* @tparam T the type of the returned value.
* @return NaN if available, otherwise return the max real of type T.
**********************************************************************/
template<typename T = real> static T NaN();
/**
* Infinity
*
* @tparam T the type of the returned value.
* @return infinity if available, otherwise return the max real.
**********************************************************************/
template<typename T = real> static T infinity();
/**
* Swap the bytes of a quantity
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @return x with its bytes swapped.
**********************************************************************/
template<typename T> static T swab(T x) {
union {
T r;
unsigned char c[sizeof(T)];
} b;
b.r = x;
for (int i = sizeof(T)/2; i--; )
std::swap(b.c[i], b.c[sizeof(T) - 1 - i]);
return b.r;
}
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_MATH_HPP
|