1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
|
/**
* \file Cartesian3.hpp
* \brief Header for GeographicLib::Triaxial::Cartesian3 class
*
* Copyright (c) Charles Karney (2025) <karney@alum.mit.edu> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_CARTESIAN3_HPP)
#define GEOGRAPHICLIB_CARTESIAN3_HPP 1
#include <utility>
#include <functional>
#include <random>
#include <GeographicLib/Triaxial/Ellipsoid3.hpp>
#if defined(_MSC_VER)
// Squelch warnings about dll vs random
# pragma warning (push)
# pragma warning (disable: 4251)
#endif
namespace GeographicLib {
namespace Triaxial {
/**
* \brief Transformations between cartesian and triaxial coordinates
*
* The Cartesian3 class supports transformations between cartesian
* coordinates and various coordinates for a triaxial ellipsoid. This is
* covered in Appendices A and B of
* - C. F. F. Karney,<br>
* <a href="https://arxiv.org/abs/2511.01621">
* Jacobi's solution for geodesics on a triaxial ellipsoid</a>,<br>
* Technical Report, SRI International, Nov. 2025.<br>
* <a href="https://arxiv.org/abs/2511.01621">arxiv:2511.01621</a>
*
* Besides ellipsoidal coordinates defined in Ellipsoid3, the following
* coordinates are supported:
* * geodetic coordinates \f$(\phi, \lambda)\f$ defined by
* \f[
* \hat{\mathbf U} =
* [\cos\phi \cos\lambda, \cos\phi \sin\lambda, \sin\phi]^T,
* \f]
* where \f$\hat{\mathbf U}\f$ is the normal to the surface of the
* ellipsoid.
* * parametric coordinates \f$(\phi', \lambda')\f$ defined by
* \f[
* \mathbf R =
* [a \cos\phi' \cos\lambda', b \cos\phi' \sin\lambda',
* c \sin\phi']^T,
* \f]
* * geocentric coordinates \f$(\phi'', \lambda'')\f$ defined by
* \f[
* \hat{\mathbf R} =
* [\cos\phi'' \cos\lambda'', \cos\phi'' \sin\lambda'', \sin\phi'']^T.
* \f]
* .
* For each of these 3 coordinates, the "north pole" is at \f$[0, 0, c]^T\f$
* and the origin for longitudes is \f$[a, 0, 0]^T\f$. We also define
* alternate versions (named "geodetic*", etc., where the north pole is
* placed at \f$[a, 0, 0]^T\f$ and the origin for longitude is \f$[0, 0,
* -c]\f$. This latter set of coordinates is appropriate for ellipsoids that
* are nearly prolate.
*
* Directions on the ellipsoid are easily specified in cartesian coordinates
* as a vector tangent to the surface of the ellipsoid. This is converted to
* a heading by defined the angle the vector makes (measured clockwise) from
* the coordinate-specific north. This is defined as the direction of a line
* of constant (coordinate-specific) longitude. The resulting heading is
* denoted by \f$\alpha\f$ for ellipsoidal coordinates and by \f$\zeta\f$ for
* the other coordinates. The unstarred coordinates all share the same
* direction for north, and likewise for the starred coordinates. Note that
* the lines of constant longitude and latitude are only orthogonal (in
* general) for ellipsoidal coordinates.
*
* Arbitrary points (not necessarily lying on the ellipsoid) an additional
* "height" is required to specify the position. For ellipsoidal
* coordinates, we find the confocal ellipsoid on which the point lies and
* the height is then defined as \f$H = u - c\f$ where \f$u\f$ is the
* semiminor axes of the confocal ellipsoid; the ellipsoid latitude and
* longitude are those for the confocal ellipsoid For the other coordinates
* systems, we define \f$h\f$ a the height above the closest point on the
* ellipsoid and the latitude and longitude refer to the closest point.
*
* \note The family of confocal ellipsoids has semiaxes \f$[\sqrt{a^2 - c^2 +
* u^2}, \sqrt{b^2 - c^2 + u^2}, u]\f$.
*
* \note In the function names "any" stands for any of the seven coordinate
* systems enumerated by Cartesian3::coord. "cart2" refers to a point
* given in cartesian coordinates that lies on the ellipsoid. On the other
* hand, "cart" refers to an arbitrary point.
*
* Example of use:
* \include example-Cartesian3.cpp
*
* <a href="Cart3Convert.1.html">Cart3Convert</a> is a command-line utility
* providing access to the functionality of Cartestian3.
**********************************************************************/
class GEOGRAPHICLIB_EXPORT Cartesian3 {
public:
/**
* A type to hold three-dimensional positions and directions in cartesian
* coordinates.
**********************************************************************/
using vec3 = Ellipsoid3::vec3;
private:
using real = Math::real;
#if GEOGRAPHICLIB_PRECISION > 3
// <random> only supports "standard" floating point types
using random_prec = Math::extended;
#else
using random_prec = Math::real;
#endif
using ang = Angle;
static constexpr int maxit_ = 20;
static constexpr bool throw_ = true; // exception on convergence failure
const Ellipsoid3 _t;
const vec3 _axes, _axes2, _linecc2;
// mutable because using these objects in a non-const operation
mutable std::normal_distribution<random_prec> _norm;
mutable std::uniform_real_distribution<random_prec> _uni;
static void roty(vec3& R, int n) {
// require n = -1, 0, 1
// Prolate convention has major axis in z direction, minor axis in -x
// direction, median axis is unchanged.
// If n = 0, do nothing otherwise...
// With n = +1, multiply by
// [ 0 0 -1]
// [ 0 1 0]
// [ 1 0 0]
// which transforms original x, y, z to prolate convention.
// With n = -1, multiply by
// [ 0 0 1]
// [ 0 1 0]
// [-1 0 0]
// which transforms prolate convention to original x, y, z.
if (n != 0) {
using std::swap;
R[1+n] = -R[1+n];
swap(R[0], R[2]);
}
}
template<int n>
void cart2togeneric(vec3 R, ang& phi, ang& lam, bool alt) const;
template<int n>
void generictocart2(ang phi, ang lam, vec3& R, bool alt) const;
template<int n> ang meridianplane(ang lam, bool alt) const;
void cardinaldir(vec3 R, ang merid, vec3& N, vec3& E, bool alt) const;
template<int n>
void cart2togeneric(vec3 R, vec3 V, ang& phi, ang& lam, ang& zet, bool alt)
const;
template<int n>
void generictocart2(ang phi, ang lam, ang zet, vec3& R, vec3&V, bool alt)
const;
real cubic(vec3 R2) const;
template<int n>
class funp {
private:
// Evaluate
// f(p) = sum( (R[0]/(p + l[0]))^n, k = 0..2) - 1
// and it derivative.
const real _d;
const vec3 _r, _l;
public:
funp(const vec3& R, const vec3& l)
: _d(std::numeric_limits<real>::epsilon()/2)
, _r(R)
, _l(l)
{
static_assert(n >= 1 && n <= 2, "Bad power in funp");
}
std::pair<real, real> operator()(real p) const;
};
static real cartsolve(const std::function<std::pair<real, real>(real)>& f,
real p0, real pscale);
void carttoellip(vec3 R, Angle& bet, Angle& omg, real& H) const;
void elliptocart(Angle bet, Angle omg, real H, vec3& R) const;
// real a() const { return t().a(); } // not needed
real b() const { return t().b(); }
real c() const { return t().c(); }
public:
/**
* Enumerator for all the coordinates.
**********************************************************************/
enum coord {
/**
* Geodetic coordinates, \e phi, \e lam, \e zet \e h;
* @hideinitializer
**********************************************************************/
GEODETIC = 0,
/**
* Parametric coordinates, \e phi', \e lam', \e zet, \e h;
* @hideinitializer
**********************************************************************/
PARAMETRIC = 1,
/**
* %Geocentric coordinates, \e phi'', \e lam'', \e zet, \e h;
* @hideinitializer
**********************************************************************/
GEOCENTRIC = 2,
/**
* Ellipsoidal coordinates, \e beta, \e omg, \e alp, \e H;
* @hideinitializer
**********************************************************************/
ELLIPSOIDAL = 3,
/**
* Geodetic coordinates with pole aligned with the major axis.
* @hideinitializer
**********************************************************************/
GEODETIC_X = 4 + GEODETIC,
/**
* Parametric coordinates with pole aligned with the major axis.
* @hideinitializer
**********************************************************************/
PARAMETRIC_X = 4 + PARAMETRIC,
/**
* %Geocentric coordinates with pole aligned with the major axis.
* @hideinitializer
**********************************************************************/
GEOCENTRIC_X = 4 + GEOCENTRIC,
/**
* An alias for GEODETIC;
* @hideinitializer
**********************************************************************/
PLANETODETIC = GEODETIC,
/**
* Another alias for GEODETIC;
* @hideinitializer
**********************************************************************/
GEOGRAPHIC = GEODETIC,
/**
* An alias for GEOCENTRIC;
* @hideinitializer
**********************************************************************/
PLANETOCENTRIC = GEOCENTRIC,
};
/** \name Transformations for points on the ellipsoid.
**********************************************************************/
///@{
/**
* Constructor for a triaxial ellipsoid defined by Ellipsoid3 object.
*
* @param[in] t the Ellipsoid3 object.
**********************************************************************/
Cartesian3(const Ellipsoid3& t);
/**
* Constructor for a triaxial ellipsoid with semiaxes.
*
* @param[in] a the largest semiaxis.
* @param[in] b the middle semiaxis.
* @param[in] c the smallest semiaxis.
* @exception GeographicErr if the required ordering is semiaxes is
* violated.
*
* The semiaxes must satisfy \e a ≥ \e b ≥ \e c > 0.
* If \e a = \e c (a sphere), then the oblate limit is taken.
**********************************************************************/
Cartesian3(real a, real b, real c);
/**
* Alternate constructor for a triaxial ellipsoid.
*
* @param[in] b the middle semiaxis.
* @param[in] e2 the eccentricity squared \f$e^2 = (a^2 - c^2)/b^2\f$.
* @param[in] k2 the oblateness parameter squared \f$k^2 = (b^2 - c^2) /
* (a^2 - c^2)\f$.
* @param[in] kp2 the prolateness parameter squared \f$k'^2= (a^2 - b^2) /
* (a^2 - c^2)\f$.
* @exception GeographicErr if the required ordering is semiaxes is
* violated.
*
* \note The constructor normalizes \e k2 and \e kp2 to ensure then \e k2 +
* \e kp2 = 1.
**********************************************************************/
Cartesian3(real b, real e2, real k2, real kp2);
///@}
/** \name Transformations for points on the ellipsoid.
**********************************************************************/
///@{
/**
* Convert latitude and longitude to a point on the surface.
*
* @param[in] coordin one of the coordinate types, Cartesian3::coord.
* @param[in] lat the latitude of the point.
* @param[in] lon the longitude of the point.
* @param[out] R the cartesian position on the surface of the ellipsoid.
* @exception GeographicErr if \e coordin is not recognized.
**********************************************************************/
void anytocart2(coord coordin, Angle lat, Angle lon, vec3& R) const;
/**
* Convert latitude and longitude in degrees to a point on the surface.
*
* @param[in] coordin one of the coordinate types, Cartesian3::coord.
* @param[in] lat the latitude of the point (in degrees).
* @param[in] lon the longitude of the point (in degrees).
* @param[out] R the cartesian position on the surface of the ellipsoid.
* @exception GeographicErr if \e coordin is not recognized.
**********************************************************************/
void anytocart2(coord coordin, real lat, real lon, vec3& R) const {
anytocart2(coordin, Angle(lat), Angle(lon), R);
}
/**
* Convert a point on the surface to latitude and longitude.
*
* @param[in] R the cartesian position on the surface of the ellipsoid.
* @param[in] coordout one of the coordinate types, Cartesian3::coord.
* @param[out] lat the latitude of the point.
* @param[out] lon the longitude of the point.
* @exception GeographicErr if \e coordout is not recognized.
**********************************************************************/
void cart2toany(vec3 R, coord coordout, Angle& lat, Angle& lon) const;
/**
* Convert a point on the surface to latitude and longitude in degrees.
*
* @param[in] R the cartesian position on the surface of the ellipsoid.
* @param[in] coordout one of the coordinate types, Cartesian3::coord.
* @param[out] lat the latitude of the point (in degrees).
* @param[out] lon the longitude of the point (in degrees).
* @exception GeographicErr if \e coordout is not recognized.
**********************************************************************/
void cart2toany(vec3 R, coord coordout, real& lat, real& lon) const {
Angle lata, lona; cart2toany(R, coordout, lata, lona);
lat = real(lata); lon = real(lona);
}
/**
* Convert between latitudes and longitudes.
*
* @param[in] coordin one of the coordinate types, Cartesian3::coord.
* @param[in] lat1 the \e coordin latitude of the point.
* @param[in] lon1 the \e coordin longitude of the point.
* @param[in] coordout one of the coordinate types, Cartesian3::coord.
* @param[out] lat2 the \e coordout latitude of the point.
* @param[out] lon2 the \e coordout longitude of the point.
* @exception GeographicErr if \e coordin or \e coordout is not recognized.
**********************************************************************/
void anytoany(coord coordin, Angle lat1, Angle lon1,
coord coordout, Angle& lat2, Angle& lon2) const;
/**
* Convert between latitudes and longitudes in degrees.
*
* @param[in] coordin one of the coordinate types, Cartesian3::coord.
* @param[in] lat1 the \e coordin latitude of the point (in degrees).
* @param[in] lon1 the \e coordin longitude of the point (in degrees).
* @param[in] coordout one of the coordinate types, Cartesian3::coord.
* @param[out] lat2 the \e coordout latitude of the point (in degrees).
* @param[out] lon2 the \e coordout longitude of the point (in degrees).
* @exception GeographicErr if \e coordin or \e coordout is not recognized.
**********************************************************************/
void anytoany(coord coordin, real lat1, real lon1,
coord coordout, real& lat2, real& lon2) const {
Angle lat2a, lon2a;
anytoany(coordin, Angle(lat1), Angle(lon1), coordout, lat2a, lon2a);
lat2 = real(lat2a); lon2 = real(lon2a);
}
///@}
/** \name Transformations for points and directions on the ellipsoid.
**********************************************************************/
///@{
/**
* Convert latitude, longitude, and azimuth to cartesian position and
* direction.
*
* @param[in] coordin one of the coordinate types, Cartesian3::coord.
* @param[in] lat the latitude of the point.
* @param[in] lon the longitude of the point.
* @param[in] azi the azimuth of the heading.
* @param[out] R the cartesian position on the surface of the ellipsoid.
* @param[out] V the cartesian direction tangent to the ellipsoid.
* @exception GeographicErr if \e coordin is not recognized.
**********************************************************************/
void anytocart2(coord coordin, Angle lat, Angle lon, Angle azi,
vec3& R, vec3& V) const;
/**
* Convert latitude, longitude, and azimuth in degrees to cartesian
* position and direction.
*
* @param[in] coordin one of the coordinate types, Cartesian3::coord.
* @param[in] lat the latitude of the point (in degrees).
* @param[in] lon the longitude of the point (in degrees).
* @param[in] azi the azimuth of the heading (in degrees).
* @param[out] R the cartesian position on the surface of the ellipsoid.
* @param[out] V the cartesian direction tangent to the ellipsoid.
* @exception GeographicErr if \e coordin is not recognized.
**********************************************************************/
void anytocart2(coord coordin, real lat, real lon, real azi,
vec3& R, vec3& V) const {
anytocart2(coordin, Angle(lat), Angle(lon), Angle(azi), R, V);
}
/**
* Convert position and direction on surface to latitude, longitude, and
* azimuth.
*
* @param[in] R the cartesian position on the surface of the ellipsoid.
* @param[in] V the cartesian direction tangent to the ellipsoid.
* @param[in] coordout one of the coordinate types, Cartesian3::coord.
* @param[out] lat the latitude of the point.
* @param[out] lon the longitude of the point.
* @param[out] azi the azimuth of the heading.
* @exception GeographicErr if \e coordout is not recognized.
**********************************************************************/
void cart2toany(vec3 R, vec3 V,
coord coordout, Angle& lat, Angle& lon, Angle& azi) const;
/**
* Convert position and direction on surface to latitude, longitude, and
* azimuth in degrees.
*
* @param[in] R the cartesian position on the surface of the ellipsoid.
* @param[in] V the cartesian direction tangent to the ellipsoid.
* @param[in] coordout one of the coordinate types, Cartesian3::coord.
* @param[out] lat the latitude of the point (in degrees).
* @param[out] lon the longitude of the point (in degrees).
* @param[out] azi the azimuth of the heading (in degrees).
* @exception GeographicErr if \e coordout is not recognized.
**********************************************************************/
void cart2toany(vec3 R, vec3 V,
coord coordout, real& lat, real& lon, real& azi) const {
Angle lata, lona, azia; cart2toany(R, V, coordout, lata, lona, azia);
lat = real(lata); lon = real(lona), azi = real(azia);
}
///@}
/** \name Transformations for arbitrary points.
**********************************************************************/
///@{
/**
* Convert latitude, longitude, and height to a cartesian position.
*
* @param[in] coordin one of the coordinate types, Cartesian3::coord.
* @param[in] lat the latitude of the point.
* @param[in] lon the longitude of the point.
* @param[in] h the height (in meters).
* @param[out] R the cartesian position of the point.
* @exception GeographicErr if \e coordin is not recognized.
**********************************************************************/
void anytocart(coord coordin, Angle lat, Angle lon, real h, vec3& R) const;
/**
* Convert latitude, longitude in degrees, and height to a cartesian
* position.
*
* @param[in] coordin one of the coordinate types, Cartesian3::coord.
* @param[in] lat the latitude of the point (in degrees).
* @param[in] lon the longitude of the point (in degrees).
* @param[in] h the height (in meters).
* @param[out] R the cartesian position of the point.
* @exception GeographicErr if \e coordin is not recognized.
**********************************************************************/
void anytocart(coord coordin, real lat, real lon, real h, vec3& R) const {
anytocart(coordin, Angle(lat), Angle(lon), h, R);
}
/**
* Convert a cartesian position to latitude, longitude, and height.
*
* @param[in] R the cartesian position of the point.
* @param[in] coordout one of the coordinate types, Cartesian3::coord.
* @param[out] lat the latitude of the point.
* @param[out] lon the longitude of the point.
* @param[out] h the height (in meters).
* @exception GeographicErr if \e coordin is not recognized.
**********************************************************************/
void carttoany(vec3 R,
coord coordout, Angle& lat, Angle& lon, real& h) const;
/**
* Convert a cartesian position to latitude, longitude in degrees, and
* height.
*
* @param[in] R the cartesian position of the point.
* @param[in] coordout one of the coordinate types, Cartesian3::coord.
* @param[out] lat the latitude of the point (in degrees).
* @param[out] lon the longitude of the point (in degrees).
* @param[out] h the height (in meters).
* @exception GeographicErr if \e coordin is not recognized.
**********************************************************************/
void carttoany(vec3 R,
coord coordout, real& lat, real& lon, real& h) const {
Angle lata, lona; carttoany(R, coordout, lata, lona, h);
lat = real(lata); lon = real(lona);
}
///@}
/** \name Transferring an arbitrary point onto the ellipsoid.
**********************************************************************/
///@{
/**
* Convert a point on the ellipsoid and a height to a cartesian position.
*
* @param[in] R2 the cartesian position of the point on the ellipsoid.
* @param[in] h the height above the ellipsoid (in meters).
* @param[out] R the cartesian position of the point.
**********************************************************************/
void cart2tocart(vec3 R2, real h, vec3& R) const;
/**
* Find the closest point on the ellipsoid
*
* @param[in] R the cartesian position of the point.
* @param[out] R2 the cartesian position of the closest point on the
* ellipsoid.
* @param[out] h the height above the ellipsoid (in meters).
**********************************************************************/
void carttocart2(vec3 R, vec3& R2, real& h) const;
///@}
/** \name Generating random points on the ellipsoid.
**********************************************************************/
///@{
/**
* Generate a random point on the ellipsoid.
*
* @tparam G the type of the random generator.
* @param[inout] g the random generator.
* @param[out] R a cartesian position uniformly sampled on the surface of
* the ellipsoid.
*
* See the example listed in the description of this class for an example
* of using this function.
*
* The method of sampling is given by
* <a href="https://doi.org/10.1007/s11075-023-01628-4"> Marples and
* Williams (2023)</a> Algorithm 1, based on the general method of
* <a href="https://doi.org/10.1088/0031-9155/32/10/009"> Williamson
* (1987)</a>.
**********************************************************************/
template <class G> void cart2rand(G& g, vec3& R) const;
/**
* Generate a random point and direction on the ellipsoid.
*
* @tparam G the type of the random generator.
* @param[inout] g the random generator.
* @param[out] R a cartesian position uniformly sampled on the surface of
* the ellipsoid.
* @param[out] V a cartesian direction uniformly sampled tangent to the
* ellipsoid.
**********************************************************************/
template <class G> void cart2rand(G& g, vec3& R, vec3& V) const;
///@}
/** \name Inspector function
**********************************************************************/
///@{
/**
* @return the Ellipsoid3 object for this projection.
**********************************************************************/
const Ellipsoid3& t() const { return _t; }
///@}
};
template<class G> inline void Cartesian3::cart2rand(G& g, vec3& R) const {
// This uses the simple rejection technique given by Marples and Williams,
// Num. Alg. (2023), Algorithm 1 based on the general method of Williamson,
// Phys. Med. Biol. (1987).
using std::isfinite;
while (true) {
while (true) {
// guaranteed evaluated left to right
R = {real(_norm(g)), real(_norm(g)), real(_norm(g))};
Ellipsoid3::normvec(R); // But catch rare cases where |R| = 0
if (isfinite(R[0])) break;
}
R[0] *= _axes[0]; R[1] *= _axes[1]; R[2] *= _axes[2];
vec3 up{ R[0] / _axes2[0], R[1] / _axes2[1], R[2] / _axes2[2] };
real q = c() * Math::hypot3(up[0], up[1], up[2]);
if (real(_uni(g)) < q) break;
}
}
template<class G> inline void Cartesian3::cart2rand(G& g, vec3& R, vec3& V)
const {
using std::isfinite;
cart2rand<G>(g, R);
while (true) {
// guaranteed evaluated left to right
V = {real(_norm(g)), real(_norm(g)), real(_norm(g))};
vec3 up{ R[0] / _axes2[0], R[1] / _axes2[1], R[2] / _axes2[2] };
real u2 = Math::sq(up[0]) + Math::sq(up[1]) + Math::sq(up[2]), // |up|^2
// (up . V) / |up|^2
uv = (V[0] * up[0] + V[1] * up[1] + V[2] * up[2])/u2;
// V - up * (up . V) / |up|^2
V[0] -= uv * up[0]; V[1] -= uv * up[1]; V[2] -= uv * up[2];
Ellipsoid3::normvec(V); // But catch rare cases where |V| = 0
if (isfinite(V[0])) break;
}
}
} // namespace Triaxial
} // namespace GeographicLib
#if defined(_MSC_VER)
# pragma warning (pop)
#endif
#endif // GEOGRAPHICLIB_CARTESIAN3_HPP
|