1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
/**
* \file polygontest.cpp
* \brief Test treatment of +/-0 and +/-180
*
* Copyright (c) Charles Karney (2022) <karney@alum.mit.edu> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#include <iostream>
#include <limits>
#include <string>
#include <GeographicLib/Math.hpp>
#include <GeographicLib/Utility.hpp>
#include <GeographicLib/DMS.hpp>
#include <GeographicLib/Geodesic.hpp>
#include <GeographicLib/GeodesicExact.hpp>
#include <GeographicLib/UTMUPS.hpp>
#include <GeographicLib/MGRS.hpp>
#include <GeographicLib/PolygonArea.hpp>
using namespace std;
using namespace GeographicLib;
typedef Math::real T;
static int checkEquals(T x, T y, T d) {
if (fabs(x - y) <= d)
return 0;
cout << "checkEquals fails: " << x << " != " << y << " +/- " << d << "\n";
return 1;
}
static int checkNaN(T x) {
if (isnan(x))
return 0;
cout << "checkNaN fails\n";
return 1;
}
static int Planimeter15() {
// Coverage tests, includes Planimeter15 - Planimeter18 (combinations of
// reverse and sign) + calls to testpoint, testedge, geod_polygonarea.
const Geodesic& g = Geodesic::WGS84();
PolygonArea polygon(g);
T lat[] = {2, 1, 3}, lon[] = {1, 2, 3};
T perim, area, s12, azi1, azi2;
T r = 18454562325.45119,
a0 = 510065621724088.5093; // ellipsoid area
int result = 0;
polygon.AddPoint(lat[0], lon[0]);
polygon.AddPoint(lat[1], lon[1]);
polygon.TestPoint(lat[2], lon[2], false, true, perim, area);
result += checkEquals(area, r, 0.5);
polygon.TestPoint(lat[2], lon[2], false, false, perim, area);
result += checkEquals(area, r, 0.5);
polygon.TestPoint(lat[2], lon[2], true, true, perim, area);
result += checkEquals(area, -r, 0.5);
polygon.TestPoint(lat[2], lon[2], true, false, perim, area);
result += checkEquals(area, a0-r, 0.5);
g.Inverse(lat[1], lon[1], lat[2], lon[2], s12, azi1, azi2);
polygon.TestEdge(azi1, s12, false, true, perim, area);
result += checkEquals(area, r, 0.5);
polygon.TestEdge(azi1, s12, false, false, perim, area);
result += checkEquals(area, r, 0.5);
polygon.TestEdge(azi1, s12, true, true, perim, area);
result += checkEquals(area, -r, 0.5);
polygon.TestEdge(azi1, s12, true, false, perim, area);
result += checkEquals(area, a0-r, 0.5);
polygon.AddPoint(lat[2], lon[2]);
polygon.Compute(false, true, perim, area);
result += checkEquals(area, r, 0.5);
polygon.Compute(false, false, perim, area);
result += checkEquals(area, r, 0.5);
polygon.Compute(true, true, perim, area);
result += checkEquals(area, -r, 0.5);
polygon.Compute(true, false, perim, area);
result += checkEquals(area, a0-r, 0.5);
return result;
}
static int Planimeter19() {
// Coverage tests, includes Planimeter19 - Planimeter20 (degenerate
// polygons) + extra cases.
const Geodesic& g = Geodesic::WGS84();
PolygonArea polygon(g, false);
PolygonArea polyline(g, true);
T perim, area;
int result = 0;
polygon.Compute(false, true, perim, area);
result += checkEquals(area, 0, 0);
result += checkEquals(perim, 0, 0);
polygon.TestPoint(1, 1, false, true, perim, area);
result += checkEquals(area, 0, 0);
result += checkEquals(perim, 0, 0);
polygon.TestEdge(90, 1000, false, true, perim, area);
result += checkNaN(area);
result += checkNaN(perim);
polygon.AddPoint(1, 1);
polygon.Compute(false, true, perim, area);
result += checkEquals(area, 0, 0);
result += checkEquals(perim, 0, 0);
polyline.Compute(false, true, perim, area);
result += checkEquals(perim, 0, 0);
polyline.TestPoint(1, 1, false, true, perim, area);
result += checkEquals(perim, 0, 0);
polyline.TestEdge(90, 1000, false, true, perim, area);
result += checkNaN(perim);
polyline.AddPoint(1, 1);
polyline.Compute(false, true, perim, area);
result += checkEquals(perim, 0, 0);
polyline.AddPoint(1, 1);
polyline.TestEdge(90, 1000, false, true, perim, area);
result += checkEquals(perim, 1000, 1e-10);
polyline.TestPoint(2, 2, false, true, perim, area);
result += checkEquals(perim, 156876.149, 0.5e-3);
return result;
}
static int Planimeter21() {
// Some test to add code coverage: multiple circlings of pole (includes
// Planimeter21 - Planimeter28) + invocations via testpoint and testedge.
const Geodesic& g = Geodesic::WGS84();
PolygonArea polygon(g);
T perim, area, lat = 45,
a = 39.2144607176828184218, s = 8420705.40957178156285,
r = 39433884866571.4277, // Area for one circuit
a0 = 510065621724088.5093; // Ellipsoid area
int result = 0, i;
polygon.AddPoint(lat, 60);
polygon.AddPoint(lat, 180);
polygon.AddPoint(lat, -60);
polygon.AddPoint(lat, 60);
polygon.AddPoint(lat, 180);
polygon.AddPoint(lat, -60);
for (i = 3; i <= 4; ++i) {
polygon.AddPoint(lat, 60);
polygon.AddPoint(lat, 180);
polygon.TestPoint(lat, -60, false, true, perim, area);
result += checkEquals(area, i*r, 0.5);
polygon.TestPoint(lat, -60, false, false, perim, area);
result += checkEquals(area, i*r, 0.5);
polygon.TestPoint(lat, -60, true, true, perim, area);
result += checkEquals(area, -i*r, 0.5);
polygon.TestPoint(lat, -60, true, false, perim, area);
result += checkEquals(area, -i*r + a0, 0.5);
polygon.TestEdge(a, s, false, true, perim, area);
result += checkEquals(area, i*r, 0.5);
polygon.TestEdge(a, s, false, false, perim, area);
result += checkEquals(area, i*r, 0.5);
polygon.TestEdge(a, s, true, true, perim, area);
result += checkEquals(area, -i*r, 0.5);
polygon.TestEdge(a, s, true, false, perim, area);
result += checkEquals(area, -i*r + a0, 0.5);
polygon.AddPoint(lat, -60);
polygon.Compute(false, true, perim, area);
result += checkEquals(area, i*r, 0.5);
polygon.Compute(false, false, perim, area);
result += checkEquals(area, i*r, 0.5);
polygon.Compute(true, true, perim, area);
result += checkEquals(area, -i*r, 0.5);
polygon.Compute(true, false, perim, area);
result += checkEquals(area, -i*r + a0, 0.5);
}
return result;
}
static int Planimeter29() {
// Check fix to transitdirect vs transit zero handling inconsistency
const Geodesic& g = Geodesic::WGS84();
PolygonArea polygon(g);
T perim, area;
int result = 0;
polygon.AddPoint(0, 0);
polygon.AddEdge( 90, 1000);
polygon.AddEdge( 0, 1000);
polygon.AddEdge(-90, 1000);
polygon.Compute(false, true, perim, area);
// The area should be 1e6. Prior to the fix it was 1e6 - A/2, where
// A = ellipsoid area.
result += checkEquals(area, 1000000.0, 0.01);
return result;
}
int main() {
Utility::set_digits();
int n = 0, i;
i = Planimeter15(); n += i;
if (i)
cout << "Planimeter15 failure\n";
i = Planimeter19(); n += i;
if (i)
cout << "Planimeter19 failure\n";
i = Planimeter21(); n += i;
if (i)
cout << "Planimeter21 failure\n";
i = Planimeter29(); n += i;
if (i)
cout << "Planimeter29 failure\n";
if (n) {
cout << n << " failure" << (n > 1 ? "s" : "") << "\n";
return 1;
}
}
|