1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
/**********************************************************************
* $Id: CGAlgorithms.cpp,v 1.19 2004/11/20 15:39:57 strk Exp $
*
* GEOS - Geometry Engine Open Source
* http://geos.refractions.net
*
* Copyright (C) 2001-2002 Vivid Solutions Inc.
*
* This is free software; you can redistribute and/or modify it under
* the terms of the GNU Lesser General Public Licence as published
* by the Free Software Foundation.
* See the COPYING file for more information.
*
**********************************************************************/
#include <geos/geosAlgorithm.h>
#include <stdio.h>
#include <math.h>
namespace geos {
/**
* Returns the index of the direction of the point <code>q</code>
* relative to a
* vector specified by <code>p1-p2</code>.
*
* @param p1 the origin point of the vector
* @param p2 the final point of the vector
* @param q the point to compute the direction to
*
* @return 1 if q is counter-clockwise (left) from p1-p2
* @return -1 if q is clockwise (right) from p1-p2
* @return 0 if q is collinear with p1-p2
*/
int CGAlgorithms::orientationIndex(const Coordinate& p1,const Coordinate& p2,const Coordinate& q) {
// travelling along p1->p2, turn counter clockwise to get to q return 1,
// travelling along p1->p2, turn clockwise to get to q return -1,
// p1, p2 and q are colinear return 0.
double dx1=p2.x-p1.x;
double dy1=p2.y-p1.y;
double dx2=q.x-p2.x;
double dy2=q.y-p2.y;
return RobustDeterminant::signOfDet2x2(dx1,dy1,dx2,dy2);
}
/**
* Test whether a point lies inside a ring.
* The ring may be oriented in either direction.
* If the point lies on the ring boundary the result of this method is unspecified.
* <p>
* This algorithm does not attempt to first check the point against the envelope
* of the ring.
*
* @param p point to check for ring inclusion
* @param ring assumed to have first point identical to last point
* @return <code>true</code> if p is inside ring
*/
bool CGAlgorithms::isPointInRing(const Coordinate& p, const CoordinateSequence* ring) {
int i;
int i1; // point index; i1 = i-1
double xInt; // x intersection of segment with ray
int crossings = 0; // number of segment/ray crossings
double x1; // translated coordinates
double y1;
double x2;
double y2;
int nPts=ring->getSize();
/*
* For each segment l = (i-1, i), see if it crosses ray from test point in positive x direction.
*/
for(i=1;i<nPts;i++) {
i1 = i - 1;
Coordinate p1=ring->getAt(i);
Coordinate p2=ring->getAt(i1);
x1 = p1.x - p.x;
y1 = p1.y - p.y;
x2 = p2.x - p.x;
y2 = p2.y - p.y;
if (((y1 > 0) && (y2 <= 0)) ||
((y2 > 0) && (y1 <= 0))) {
/*
* segment straddles x axis, so compute intersection.
*/
xInt = RobustDeterminant::signOfDet2x2(x1, y1, x2, y2) / (y2 - y1);
//xsave = xInt;
/*
* crosses ray if strictly positive intersection.
*/
if (0.0 < xInt) {
crossings++;
}
}
}
/*
* p is inside if number of crossings is odd.
*/
if ((crossings % 2) == 1) {
return true;
} else {
return false;
}
}
/**
* Test whether a point lies on a linestring.
*
* @return true true if
* the point is a vertex of the line or lies in the interior of a line
* segment in the linestring
*/
bool
CGAlgorithms::isOnLine(const Coordinate& p, const CoordinateSequence* pt)
{
RobustLineIntersector lineIntersector;
for(int i=1;i<pt->getSize();i++) {
Coordinate p0=pt->getAt(i-1);
Coordinate p1=pt->getAt(i);
lineIntersector.computeIntersection(p, p0, p1);
if (lineIntersector.hasIntersection()) {
return true;
}
}
return false;
}
/*
* Computes whether a ring defined by an array of Coordinate is
* oriented counter-clockwise.
*
* - The list of points is assumed to have the first and last points equal.
* - This will handle coordinate lists which contain repeated points.
* - If the ring is invalid, the answer returned may not be correct.
*
*
* @param ring an array of coordinates forming a ring
* @return <code>true</code> if the ring is oriented counter-clockwise.
*/
bool CGAlgorithms::isCCW(const CoordinateSequence* ring) {
// # of points without closing endpoint
int nPts=ring->getSize()-1;
// find highest point
Coordinate hip=ring->getAt(0);
int hii=0;
for (int i=1;i<=nPts;i++) {
Coordinate p=ring->getAt(i);
if (p.y > hip.y) {
hip = p;
hii = i;
}
}
// find distinct point before highest point
int iPrev = hii;
do {
iPrev = iPrev - 1;
if (iPrev < 0) iPrev = nPts;
} while (ring->getAt(iPrev)==hip && iPrev!=hii);
// find distinct point after highest point
int iNext = hii;
do {
iNext = (iNext + 1) % nPts;
} while (ring->getAt(iNext)==hip && iNext != hii);
Coordinate prev=ring->getAt(iPrev);
Coordinate next=ring->getAt(iNext);
/*
* this will catch all cases where there are not 3 distinct points,
* including the case where the input array has fewer than 4 elements
*/
if (prev==hip || next==hip || prev==next)
{
return false;
// MD - don't bother throwing exception,
// since this isn't a complete check for ring validity
//throw new IllegalArgumentException("degenerate ring (does not contain 3 distinct points)");
}
int disc = computeOrientation(prev, hip, next);
/**
* If disc is exactly 0, lines are collinear. There are two possible cases:
* (1) the lines lie along the x axis in opposite directions
* (2) the lines lie on top of one another
*
* (1) is handled by checking if next is left of prev ==> CCW
* (2) should never happen, so we're going to ignore it!
* (Might want to assert this)
*/
bool isCCW=false;
if (disc == 0) {
// poly is CCW if prev x is right of next x
isCCW = (prev.x > next.x);
} else {
// if area is positive, points are ordered CCW
isCCW = (disc > 0);
}
return isCCW;
}
/**
* Computes the orientation of a point q to the directed line segment p1-p2.
* The orientation of a point relative to a directed line segment indicates
* which way you turn to get to q after travelling from p1 to p2.
*
* @return 1 if q is counter-clockwise from p1-p2
* @return -1 if q is clockwise from p1-p2
* @return 0 if q is collinear with p1-p2
*/
int CGAlgorithms::computeOrientation(const Coordinate& p1, const Coordinate& p2, const Coordinate& q) {
return orientationIndex(p1,p2,q);
}
/**
* Computes the distance from a point p to a line segment AB
*
* Note: NON-ROBUST!
*
* @param p the point to compute the distance for
* @param A one point of the line
* @param B another point of the line (must be different to A)
* @return the distance from p to line segment AB
*/
double
CGAlgorithms::distancePointLine(const Coordinate& p, const Coordinate& A,
const Coordinate& B)
{
//if start==end, then use pt distance
if (A==B) return p.distance(A);
// otherwise use comp.graphics.algorithms Frequently Asked Questions method
/*(1) AC dot AB
r = ---------
||AB||^2
r has the following meaning:
r=0 P = A
r=1 P = B
r<0 P is on the backward extension of AB
r>1 P is on the forward extension of AB
0<r<1 P is interior to AB
*/
double r=((p.x-A.x)*(B.x-A.x)+(p.y-A.y)*(B.y-A.y))/
((B.x-A.x)*(B.x-A.x)+(B.y-A.y)*(B.y-A.y));
if (r<=0.0) return p.distance(A);
if (r>=1.0) return p.distance(B);
/*(2)
(Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
s = -----------------------------
L^2
Then the distance from C to P = |s|*L.
*/
double s=((A.y-p.y)*(B.x-A.x)-(A.x-p.x)*(B.y-A.y))/
((B.x-A.x)*(B.x-A.x)+(B.y-A.y)*(B.y-A.y));
return fabs(s)*sqrt(((B.x-A.x)*(B.x-A.x)+(B.y-A.y)*(B.y-A.y)));
}
/**
* Computes the perpendicular distance from a point p
* to the (infinite) line containing the points AB
*
* @param p the point to compute the distance for
* @param A one point of the line
* @param B another point of the line (must be different to A)
* @return the distance from p to line AB
*/
double CGAlgorithms::distancePointLinePerpendicular(const Coordinate& p,const Coordinate& A,const Coordinate& B) {
// use comp.graphics.algorithms Frequently Asked Questions method
/*(2)
(Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
s = -----------------------------
L^2
Then the distance from C to P = |s|*L.
*/
double s = ((A.y - p.y) *(B.x - A.x) - (A.x - p.x)*(B.y - A.y) )
/
((B.x - A.x) * (B.x - A.x) + (B.y - A.y) * (B.y - A.y) );
return fabs(s)*sqrt(((B.x - A.x) * (B.x - A.x) + (B.y - A.y) * (B.y - A.y)));
}
/**
* Computes the distance from a line segment AB to a line segment CD
*
* Note: NON-ROBUST!
*
* @param A a point of one line
* @param B the second point of (must be different to A)
* @param C one point of the line
* @param D another point of the line (must be different to A)
*/
double
CGAlgorithms::distanceLineLine(const Coordinate& A, const Coordinate& B,
const Coordinate& C, const Coordinate& D)
{
// check for zero-length segments
if (A==B) return distancePointLine(A,C,D);
if (C==D) return distancePointLine(D,A,B);
// AB and CD are line segments
/* from comp.graphics.algo
Solving the above for r and s yields
(Ay-Cy)(Dx-Cx)-(Ax-Cx)(Dy-Cy)
r = ----------------------------- (eqn 1)
(Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx)
(Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
s = ----------------------------- (eqn 2)
(Bx-Ax)(Dy-Cy)-(By-Ay)(Dx-Cx)
Let P be the position vector of the intersection point, then
P=A+r(B-A) or
Px=Ax+r(Bx-Ax)
Py=Ay+r(By-Ay)
By examining the values of r & s, you can also determine some other
limiting conditions:
If 0<=r<=1 & 0<=s<=1, intersection exists
r<0 or r>1 or s<0 or s>1 line segments do not intersect
If the denominator in eqn 1 is zero, AB & CD are parallel
If the numerator in eqn 1 is also zero, AB & CD are collinear.
*/
double r_top=(A.y-C.y)*(D.x-C.x)-(A.x-C.x)*(D.y-C.y);
double r_bot=(B.x-A.x)*(D.y-C.y)-(B.y-A.y)*(D.x-C.x);
double s_top=(A.y-C.y)*(B.x-A.x)-(A.x-C.x)*(B.y-A.y);
double s_bot=(B.x-A.x)*(D.y-C.y)-(B.y-A.y)*(D.x-C.x);
if ((r_bot==0)||(s_bot==0)) {
return min(distancePointLine(A,C,D),min(distancePointLine(B,C,D),min(distancePointLine(C,A,B),distancePointLine(D,A,B))));
}
double s=s_top/s_bot;
double r=r_top/r_bot;
if ((r<0)||( r>1)||(s<0)||(s>1)) {
//no intersection
return min(distancePointLine(A,C,D),min(distancePointLine(B,C,D),min(distancePointLine(C,A,B),distancePointLine(D,A,B))));
}
return 0.0; //intersection exists
}
/**
* Returns the signed area for a ring. The area is positive if
* the ring is oriented CW.
*/
double CGAlgorithms::signedArea(const CoordinateSequence* ring) {
if (ring->getSize()<3) return 0.0;
double sum=0.0;
for (int i=0;i<ring->getSize()-1;i++) {
double bx=ring->getAt(i).x;
double by=ring->getAt(i).y;
double cx=ring->getAt(i+1).x;
double cy=ring->getAt(i+1).y;
sum+=(bx+cx)*(cy-by);
}
return -sum/2.0;
}
/**
* Returns the length of a list of line segments.
*/
double CGAlgorithms::length(const CoordinateSequence* pts) {
if (pts->getSize()<1) return 0.0;
double sum=0.0;
for(int i=1;i<pts->getSize();i++) {
sum+=pts->getAt(i).distance(pts->getAt(i - 1));
}
return sum;
}
} // namespace geos
/**********************************************************************
* $Log: CGAlgorithms.cpp,v $
* Revision 1.19 2004/11/20 15:39:57 strk
* Reduced HEAP allocations.
*
* Revision 1.18 2004/11/06 08:16:46 strk
* Fixed CGAlgorithms::isCCW from JTS port.
* Code cleanup in IsValidOp.
*
* Revision 1.17 2004/11/05 11:41:57 strk
* Made IsValidOp handle IllegalArgumentException throw from GeometryGraph
* as a sign of invalidity (just for Polygon geometries).
* Removed leaks generated by this specific exception.
*
* Revision 1.16 2004/07/08 19:34:49 strk
* Mirrored JTS interface of CoordinateSequence, factory and
* default implementations.
* Added DefaultCoordinateSequenceFactory::instance() function.
*
* Revision 1.15 2004/07/02 13:28:26 strk
* Fixed all #include lines to reflect headers layout change.
* Added client application build tips in README.
*
* Revision 1.14 2004/04/16 09:01:29 strk
* Removed memory leak in CGAlgorithms::isOnline
*
* Revision 1.13 2004/04/05 06:35:14 ybychkov
* "operation/distance" upgraded to JTS 1.4
*
* Revision 1.12 2004/03/17 02:00:33 ybychkov
* "Algorithm" upgraded to JTS 1.4
*
* Revision 1.11 2004/02/27 17:42:15 strk
* made CGAlgorithms::signedArea() and CGAlgorithms::length() arguments const-correct
*
* Revision 1.10 2003/11/07 01:23:42 pramsey
* Add standard CVS headers licence notices and copyrights to all cpp and h
* files.
*
*
**********************************************************************/
|