| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 
 | # Title: Boundary layer on a rotating disk
#
# Description:
#
# Von K\'arm\'an \cite{karman1921} showed that the steady flow of an
# incompressible liquid of kinematic viscosity $\nu$ induced by an
# infinite plane disk rotating at angular velocity $\Omega$ can be
# described by a similarity solution. In effect, using
# $\zeta=z\sqrt{\Omega/\nu}$ and setting the axial velocity $U$,
# radial velocity $V$ and azimuthal velocity $W$ as
# $$
# U=\sqrt{\nu \Omega} F(\zeta) \quad V=\Omega r H(\zeta) 
# \quad W = \Omega r G(\zeta)
# $$
# the Navier-Stokes equations reduce to a couple of ODEs:
# $$
# F'''-F\, F'' +F'^2/2 +2G^2  = 0 \quad \mbox{and} \quad G''-F\,G'+G\,F' = 0
# $$
# with boundary conditions
# $$
# F(0)=F'(0)=0 \: G(0)=1. \quad \mbox{and} \quad F'(\infty)=G(\infty)=0.
# $$
# where the prime denotes differentiation with respect to $\zeta$.
#
# In figure \ref{veloc} the analytical dimensionless axial and
# azimuthal velocities of Von K\'arm\'an are compared with the
# numerical solutions obtained with the axisymmetric solver including
# azimuthal velocity (swirl).
#
# \begin{figure}[htbp]
# \caption{\label{veloc} Profiles of dimensionless axial and azimuthal velocities.}
# \begin{center}
# \includegraphics[width=0.8\hsize]{profiles.eps}
# \end{center}
# \end{figure}
#
# Author: J.M. L\'opez-Herrera
# Command: gerris2D swirl.gfs
# Version: 111123
# Required files: analytical
# Running time: 1 minute
# Generated files: profiles.eps
#
4 3 GfsAxi GfsBox GfsGEdge { x = 0.5 } {
    PhysicalParams { L = 3 }
    SourceViscosity 0.2
    # the block below adds the azimuthal velocity (swirl) and
    # associated terms
    VariableTracer W
    SourceDiffusion W 0.2
    Init { istep = 1 } { W = W*(1. - dt*V/y) }
    Source V W*W/y
    Refine 5
    Time { end = 12 dtmax = 2e-2 }
    EventStop { step = 0.1 } U 1e-3 DU
#    OutputTime { istep = 10 } stderr
#    OutputProjectionStats { istep = 10 } stderr
#    OutputSimulation { istep = 10 } stdout
    OutputSimulation { start = end } end.txt { format = text variables = U,W }
    OutputSimulation { start = end } end.gfs
    EventScript { start = end } {
	awk 'BEGIN{ nu = 0.2 } {
               if ($2 != 0. && $1 != "#" && ($1*$1 + $2*$2) < 8.0)
                 print $1/sqrt(nu),-$4/sqrt(nu),$5/$2;
             }' < end.txt > nu
	if gnuplot <<EOF ; then :
    set term postscript eps lw 3 color solid 20 enhanced
    set output 'profiles.eps'
    set xlabel '{/Symbol z}'
    set key center right
    plot [0:6]'analytical' u 1:2 w l t '-F({/Symbol z})', 'nu' u 1:2 t 'Gerris', \
              'analytical' u 1:3 w l t 'G({/Symbol z})', 'nu' u 1:3 t 'Gerris'
EOF
	else
	    exit $GFS_STOP;
	fi
	if python <<EOF ; then :
from check import *
from sys import *
if (Curve('nu',1,2) - Curve('analytical',1,2)).normi() > 8e-3 or \
   (Curve('nu',1,3) - Curve('analytical',1,3)).normi() > 8e-3 :
    print (Curve('nu',1,2) - Curve('analytical',1,2)).normi()
    print (Curve('nu',1,3) - Curve('analytical',1,3)).normi()
    exit(1)
EOF
	else
	    exit $GFS_STOP;
	fi
    }
}
# box 1
GfsBox {
    left = Boundary {
	BcDirichlet U 0
	BcDirichlet V 0
	BcDirichlet W y
    }
    right = Boundary {
	BcNeumann U 0
	BcNeumann V 0
	BcNeumann W 0
        BcDirichlet P 0.
    }
    bottom = Boundary { BcDirichlet W 0 }
}
# box 2
GfsBox {
    left = Boundary {
	BcDirichlet U 0
	BcDirichlet V 0
	BcDirichlet W y
    }
    right = Boundary {
	BcNeumann U 0
	BcNeumann V 0
	BcNeumann W 0
        BcDirichlet P 0.
    }
}
# box 3
GfsBox {
    left = Boundary {
	BcDirichlet U 0
	BcDirichlet V 0
	BcDirichlet W y
    }
    right = Boundary {
	BcNeumann U 0
	BcNeumann V 0
	BcNeumann W 0
        BcDirichlet P 0.
    }
}
# box 4
GfsBox {
    left = Boundary {
	BcDirichlet U 0
	BcDirichlet V 0
	BcDirichlet W y
    }
    right = Boundary {
	BcNeumann U 0
	BcNeumann V 0
	BcNeumann W 0
        BcDirichlet P 0.
    }
    top = Boundary {
	BcNeumann U 0
	BcNeumann V 0
	BcNeumann W 0
    }
}
1 2 top
2 3 top
3 4 top
 |