| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 
 | # Title: Dam break on complex topography
#
# Description:
#
# An example similar to that
# \htmladdnormallinkfoot{presented}{http://www.amath.washington.edu/~rjl/catalina/leveque1.pdf}
# by Randall J. LeVeque illustrating the solution of the
# \htmladdnormallinkfoot{Saint-Venant}{http://en.wikipedia.org/wiki/Shallow\_water\_equations}
# (or shallow-water) equations with complex topography, wetting and
# drying, shocks and hydrostatic equilibrium.
#
# \begin{figure}[htbp]
# \caption{Topography (red) and animation of the water level (blue).}
# \begin{rawhtml}
# <DIV CLASS="center">
# <IMG SRC="dam/dam.gif">
# </DIV>
# \end{rawhtml}
# \end{figure}
#
# Author: St\'ephane Popinet
# Command: gerris2D dam.gfs
# Version: 1.3.1
# Required files: dam.plot
# Running time: 2 minutes
# Generated files: dam.gif
#
# Use the GfsRiver Saint-Venant solver
1 0 GfsRiver GfsBox GfsGEdge {} {
    PhysicalParams { L = 8. }
    
    # Define a 1D domain using cell masking
    RefineSurface 9 (y - 8.*(0.5 - 1./512.))
    InitMask {} (y < 8.*(0.5 - 1./512.))
    # Set the topography Zb and the initial water surface elevation P
    Init {} {
	Zb = x*x/8.+cos(M_PI*x)/2.
	P = {
	    double p = x > 0. ? 0.35 : x < -2. ? 1.9 : -1.;
	    return MAX (0., p - Zb);
	}
    }
    PhysicalParams { g = 1. }
    # Use a first-order scheme rather than the default second-order
    # minmod limiter. This is just to add some numerical damping.
    AdvectionParams {
       # gradient = gfs_center_minmod_gradient
	gradient = none
    }
    Time { end = 40 }
    OutputProgress { istep = 10 } stderr
    OutputScalarSum { istep = 10 } ke { v = (P > 0. ? U*U/P : 0.) }
    OutputScalarSum { istep = 10 } vol { v = P }
    OutputScalarNorm { istep = 10 } u { v = (P > 0. ? U/P : 0.) }
    # use gfsplot/gnuplot for online visualisation and generation of figures
    OutputSimulation { step = 0.3 } {
	gfsplot "
          load 'dam.plot'
          set title sprintf('t = %4.1f', (t))
          plot [-4.:4.]'-' u (x):(Zb):(H) w filledcu lc 3, \
                       '-' u (x):(Zb) w l lw 4 lc 1 lt 1
          set term pngcairo size 800,600
          set output sprintf('sim-%04.1f.png', (t))
          replot
          set term wxt noraise
        "
    } { format = text }
    # Combine all the gif images into a gif animation using gifsicle
    EventScript { start = end } {
	echo "\rcreating animation...            " > /dev/stderr
        sleep 10 # give a chance to gnuplot to catch up
	for f in sim-*.png; do
	    convert $f -trim +repage -bordercolor white \
		-border 10 -resize 640x282! `basename $f .png`.gif && rm -f $f
	done
	gifsicle --colors 256 --optimize --delay 12 --loopcount=0 sim-*.gif > dam.gif && \
	    rm -f sim-*.gif
    }
}
GfsBox {
    left = Boundary
    right = Boundary
}
 |