1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
# Title: Rayleigh-Taylor instability
#
# Description:
#
# A classical test case for the flow of two fluids of different
# densities. A sinusoidal interface separates the two fluids. The
# heavier fluid is on top. A mushroom-shaped instability develops in
# time as illustrated on Figure \ref{evolution}.
#
# \begin{figure}[htbp]
# \caption{\label{evolution}Evolution of the interface.}
# \begin{center}
# \begin{tabular}{ccccc}
# \includegraphics[width=0.15\hsize]{t-0.eps} &
# \includegraphics[width=0.15\hsize]{t-0.7.eps} &
# \includegraphics[width=0.15\hsize]{t-0.8.eps} &
# \includegraphics[width=0.15\hsize]{t-0.9.eps} &
# \includegraphics[width=0.15\hsize]{t-1.eps} \\
# $t=0$ & $t=0.7$ & $t=0.8$ & $t=0.9$ & $t=1.0$
# \end{tabular}
# \end{center}
# \end{figure}
#
# \begin{figure}[htbp]
# \caption{\label{movie}MPEG movies of the tracer and vorticity fields.}
# \begin{center}
# \begin{tabular}{cc}
# \htmladdnormallinkfoot{\includegraphics[width=0.2\hsize]{t.eps}}{t.mpg} &
# \htmladdnormallinkfoot{\includegraphics[width=0.2\hsize]{vort.eps}}{vort.mpg}
# \end{tabular}
# \end{center}
# \end{figure}
#
# Author: St\'ephane Popinet
# Command: gerris2D rt.gfs | gfsview2D rt.gfv
# Version: 1.1.0
# Required files: rt.gfv
# Running time: 12 minutes
# Generated files: t.mpg vort.mpg t.eps vort.eps t-0.eps t-0.7.eps t-0.8.eps t-0.9.eps t-1.eps
#
4 3 GfsSimulation GfsBox GfsGEdge {} {
Time { end = 1 dtmax = 5e-3 }
Refine 7
# The tracer T is used to track both phases
VariableTracerVOF {} T
# The initial sinusoidal interface (translated by 0.5 along the y-axis)
InitFraction {} T (0.05*cos (2.*M_PI*x) + y) { ty = 0.5 }
AdaptVorticity { istep = 1 } { maxlevel = 7 cmax = 2e-2 }
AdaptGradient { istep = 1 } { maxlevel = 7 cmax = 1e-2 } T
# The dynamic viscosity for both phases
SourceViscosity {} 0.00313
# This defines the inverse of the density of the fluids as a
# function of T
PhysicalParams { alpha = 1./(T*1.225 + (1. - T)*0.1694) }
# We also need gravity
Source {} V -9.81
OutputTime { istep = 10 } stderr
OutputBalance { istep = 10 } stderr
OutputProjectionStats { istep = 10 } stderr
OutputDiffusionStats { istep = 10 } stderr
OutputPPM { istep = 2 } { ppm2mpeg > vort.mpg} {
min = -30 max = 30 v = Vorticity
}
OutputPPM { istep = 2 } { ppm2mpeg > t.mpg } {
min = 0 max = 1 v = T
}
OutputPPM { start = end } { convert -colors 256 ppm:- vort.eps } {
min = -30 max = 30 v = Vorticity
}
OutputPPM { start = end } { convert -colors 256 ppm:- t.eps } {
min = 0 max = 1 v = T
}
OutputTiming { start = end } stderr
OutputSimulation { step = 0.1 } stdout
EventScript { start = 0 } { echo "Save t-0.eps { format = EPS }" }
EventScript { start = 0.7 step = 0.1 } { echo "Save t-$GfsTime.eps { format = EPS }" }
}
GfsBox {}
GfsBox {}
GfsBox {}
GfsBox {}
1 2 top
2 3 top
1 4 bottom
|