File: starting.gfs

package info (click to toggle)
gerris 20131206%2Bdfsg-21
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 14,252 kB
  • sloc: ansic: 66,595; sh: 15,922; f90: 1,513; makefile: 1,150; fortran: 696; python: 493; awk: 104; lisp: 89; xml: 27
file content (76 lines) | stat: -rw-r--r-- 3,059 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Title: Starting vortex of a NACA 2414 aerofoil
#
# Description:
#
# According to Wikipedia a
# \url{http://en.wikipedia.org/wiki/Starting_vortex}{`Starting
# vortex'} \begin{quotation}is a vortex which forms in the air
# adjacent to the trailing edge of an airfoil as it is accelerated
# from rest in a fluid. It leaves the airfoil\ldots, and remains
# (nearly) stationary in the flow.  \end{quotation} Or in the frame of
# reference of the aerofoil, it appears to recede behind the wing.
# The phenomenon is fundamental to the understanding of the generation
# of lift by aerofoils; see e.g. \cite{glauert1926} (Figure 69, p. 121) or
# \cite{videler2006} (Figure 1.5, p. 21).
#
# A starting vortex is easily generated in a Gerris simulation, as
# shown here.  It does not depend for its existence on the viscosity
# of the air, or the third dimension, so here we solve the
# two-dimensional Euler equations.
#
# The phenomenon does depend on the trailing edge being sharp, as it
# is for most aerofoils.  There is a great collection of such shapes
# at the
# \url{http://www.ae.illinois.edu/m-selig/ads/coord\_database.html}{UIUC
# Airfoil Coordinates Database}.  The coordinates from these files can
# be converted to a Gerris solid surface using the Gerris command line
# utility \url{http://gfs.sourceforge.net/wiki/index.php/Shapes}{shapes}.
# Here we use a classic aerofoil, the NACA 2414 \cite{jacobs1933}, from
# \url{http://www.ae.illinois.edu/m-selig/ads/coord/n2414.dat}{n2414.dat}.
#
# Static refinement around the wing section is necessary to capture
# the shape well in a Cartesian quad-tree grid.  The grid is also
# adaptively refined on the vorticity to resolve the trailing vortex
# as it recedes into the wake.
#
# \begin{figure}[htbp]
# \caption{\label{movie}Generation of a starting vortex in plane flow
# over a NACA 2414 aerofoil at 6$^\circ$ incidence. The colour is vorticity
# (red positive anticlockwise).}
# \begin{center}
# \htmladdnormallinkfoot{\includegraphics[width=0.8\hsize]{starting.eps}}{starting.mpg}
# \end{center}
# \end{figure}
#
# Author: G. D. McBain
# Command: sh starting.sh n2414 6 | gfsview2D starting.gfv
# Version: 110213-051327
# Required files: starting.sh starting.gfv n2414.dat
# Running time: 5 minutes
# Generated files: starting.mpg starting.eps
Define FRAMEPERIOD 0.02

3 2 GfsSimulation GfsBox GfsGEdge {} {
  Time { end = 1.5 }		# exit - trailing edge = (3-0.5) - 1 = 1.5
  RefineSolid 9
  Solid AEROFOIL.gts { rz = -INCIDENCE }
  Init {} { U = 1 }
  AdaptVorticity { istep = 1 } { maxlevel = 8 cmax = 5e-2 }
  
  OutputTime { step = FRAMEPERIOD } stderr

  OutputSimulation { step = FRAMEPERIOD } stdout

  GModule gfsview
  OutputView { step = FRAMEPERIOD } { ppm2mpeg > starting.mpg } {
      width = 720 height = 240
  } starting.gfv
  OutputView { start = 1. } { convert ppm:- -geometry 720x240 starting.eps } { 
      format = PPM width = 1440 height = 480 
  } starting.gfv
}
GfsBox { left = GfsBoundaryInflowConstant 1 }
GfsBox { }
GfsBox { right = GfsBoundaryOutflow }
1 2 right
2 3 right