1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
# Title: Boundary layer on a rotating disk
#
# Description:
#
# Von K\'arm\'an \cite{karman1921} showed that the steady flow of an
# incompressible liquid of kinematic viscosity $\nu$ induced by an
# infinite plane disk rotating at angular velocity $\Omega$ can be
# described by a similarity solution. In effect, using
# $\zeta=z\sqrt{\Omega/\nu}$ and setting the axial velocity $U$,
# radial velocity $V$ and azimuthal velocity $W$ as
# $$
# U=\sqrt{\nu \Omega} F(\zeta) \quad V=\Omega r H(\zeta)
# \quad W = \Omega r G(\zeta)
# $$
# the Navier-Stokes equations reduce to a couple of ODEs:
# $$
# F'''-F\, F'' +F'^2/2 +2G^2 = 0 \quad \mbox{and} \quad G''-F\,G'+G\,F' = 0
# $$
# with boundary conditions
# $$
# F(0)=F'(0)=0 \: G(0)=1. \quad \mbox{and} \quad F'(\infty)=G(\infty)=0.
# $$
# where the prime denotes differentiation with respect to $\zeta$.
#
# In figure \ref{veloc} the analytical dimensionless axial and
# azimuthal velocities of Von K\'arm\'an are compared with the
# numerical solutions obtained with the axisymmetric solver including
# azimuthal velocity (swirl).
#
# \begin{figure}[htbp]
# \caption{\label{veloc} Profiles of dimensionless axial and azimuthal velocities.}
# \begin{center}
# \includegraphics[width=0.8\hsize]{profiles.eps}
# \end{center}
# \end{figure}
#
# Author: J.M. L\'opez-Herrera
# Command: gerris2D swirl.gfs
# Version: 111123
# Required files: analytical
# Running time: 1 minute
# Generated files: profiles.eps
#
4 3 GfsAxi GfsBox GfsGEdge { x = 0.5 } {
PhysicalParams { L = 3 }
SourceViscosity 0.2
# the block below adds the azimuthal velocity (swirl) and
# associated terms
VariableTracer W
SourceDiffusion W 0.2
Init { istep = 1 } { W = W*(1. - dt*V/y) }
Source V W*W/y
Refine 5
Time { end = 12 dtmax = 2e-2 }
EventStop { step = 0.1 } U 1e-3 DU
# OutputTime { istep = 10 } stderr
# OutputProjectionStats { istep = 10 } stderr
# OutputSimulation { istep = 10 } stdout
OutputSimulation { start = end } end.txt { format = text variables = U,W }
OutputSimulation { start = end } end.gfs
EventScript { start = end } {
awk 'BEGIN{ nu = 0.2 } {
if ($2 != 0. && $1 != "#" && ($1*$1 + $2*$2) < 8.0)
print $1/sqrt(nu),-$4/sqrt(nu),$5/$2;
}' < end.txt > nu
if gnuplot <<EOF ; then :
set term postscript eps lw 3 color solid 20 enhanced
set output 'profiles.eps'
set xlabel '{/Symbol z}'
set key center right
plot [0:6]'analytical' u 1:2 w l t '-F({/Symbol z})', 'nu' u 1:2 t 'Gerris', \
'analytical' u 1:3 w l t 'G({/Symbol z})', 'nu' u 1:3 t 'Gerris'
EOF
else
exit $GFS_STOP;
fi
if python3 <<EOF ; then :
from check import *
from sys import *
if (Curve('nu',1,2) - Curve('analytical',1,2)).normi() > 8e-3 or \
(Curve('nu',1,3) - Curve('analytical',1,3)).normi() > 8e-3 :
print((Curve('nu',1,2) - Curve('analytical',1,2)).normi())
print((Curve('nu',1,3) - Curve('analytical',1,3)).normi())
exit(1)
EOF
else
exit $GFS_STOP;
fi
}
}
# box 1
GfsBox {
left = Boundary {
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet W y
}
right = Boundary {
BcNeumann U 0
BcNeumann V 0
BcNeumann W 0
BcDirichlet P 0.
}
bottom = Boundary { BcDirichlet W 0 }
}
# box 2
GfsBox {
left = Boundary {
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet W y
}
right = Boundary {
BcNeumann U 0
BcNeumann V 0
BcNeumann W 0
BcDirichlet P 0.
}
}
# box 3
GfsBox {
left = Boundary {
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet W y
}
right = Boundary {
BcNeumann U 0
BcNeumann V 0
BcNeumann W 0
BcDirichlet P 0.
}
}
# box 4
GfsBox {
left = Boundary {
BcDirichlet U 0
BcDirichlet V 0
BcDirichlet W y
}
right = Boundary {
BcNeumann U 0
BcNeumann V 0
BcNeumann W 0
BcDirichlet P 0.
}
top = Boundary {
BcNeumann U 0
BcNeumann V 0
BcNeumann W 0
}
}
1 2 top
2 3 top
3 4 top
|