File: tide.c

package info (click to toggle)
gerris 20131206%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 12,728 kB
  • ctags: 6,777
  • sloc: ansic: 66,593; sh: 15,930; f90: 1,513; makefile: 1,180; fortran: 696; python: 484; awk: 104; lisp: 89; xml: 27
file content (404 lines) | stat: -rw-r--r-- 11,370 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
/* Gerris - The GNU Flow Solver
 * Copyright (C) 2001-2008 National Institute of Water and Atmospheric Research
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.  
 */

#include <string.h>
#include <errno.h>
#include <time.h>
#include <stdlib.h>
#include "fes2004/fes2004_lib.h"
#include "variable.h"

/* Heavily based on GfsBcFlather */

static gchar * reference = "1950/01/01-00:00:00-UTC";
static gdouble deltat = 0.;

/* GfsBcTide: Header */

typedef struct _GfsBcTide         GfsBcTide;

struct _GfsBcTide {
  /*< private >*/
  GfsBcValue parent;
  gdouble ** amplitude, ** phase, x, size;

  /*< public >*/
  GfsVariable * h, * p;
};

#define GFS_BC_TIDE(obj)            GTS_OBJECT_CAST (obj,\
					         GfsBcTide,\
					         gfs_bc_tide_class ())
#define GFS_IS_BC_TIDE(obj)         (gts_object_is_from_class (obj,\
						 gfs_bc_tide_class ()))

GfsBcClass * gfs_bc_tide_class  (void);

/* GfsBcTide: Object */

#define N  64 /* number of discretisation points */

#define NM 14 /* number of tidal modes (must match those of FES2004) */

static void bc_tide_write (GtsObject * o, FILE * fp)
{
  GfsBcTide * bc = GFS_BC_TIDE (o);
  guint i, j;

  (* GTS_OBJECT_CLASS (gfs_bc_tide_class ())->parent_class->write) (o, fp);

  fprintf (fp, " %s %s {\n", bc->h->name, bc->p->name);
  for (i = 0; i < N; i++) {
    for (j = 0; j < NM; j++)
      fprintf (fp, "  %g %g\n", bc->amplitude[j][i], bc->phase[j][i]);
  }
  fputc ('}', fp);
}

static void set_gradient_boundary (FttCell * cell)
{
  cell->flags |= GFS_FLAG_GRADIENT_BOUNDARY;
}

static void bc_tide_read (GtsObject ** o, GtsFile * fp)
{
  GfsBcTide * bc = GFS_BC_TIDE (*o);
  GfsDomain * domain = gfs_box_domain (GFS_BC (bc)->b->box);

  (* GTS_OBJECT_CLASS (gfs_bc_tide_class ())->parent_class->read) (o, fp);
  if (fp->type == GTS_ERROR)
    return;

  GfsBoundary * b = GFS_BC (bc)->b;
  if (b->d > FTT_BOTTOM) {
    gts_file_error (fp, "GfsBcTide cannot be used for 3D boundaries");
    return;
  }

  if (fp->type != GTS_STRING) {
    gts_file_error (fp, "expecting a string (h)");
    return;
  }
  bc->h = gfs_variable_from_name (domain->variables, fp->token->str);
  if (bc->h == NULL) {
    gts_file_error (fp, "unknown variable `%s'", fp->token->str);
    return;
  }
  gts_file_next_token (fp);
  if (fp->type != GTS_STRING) {
    gts_file_error (fp, "expecting a string (p)");
    return;
  }
  bc->p = gfs_variable_from_name (domain->variables, fp->token->str);
  if (bc->p == NULL) {
    gts_file_error (fp, "unknown variable `%s'", fp->token->str);
    return;
  }
  gts_file_next_token (fp);

  ftt_cell_traverse (b->root, FTT_PRE_ORDER, FTT_TRAVERSE_ALL, -1,
		     (FttCellTraverseFunc) set_gradient_boundary, NULL);

  guint i;  
  gpointer tmp = g_malloc0 (N*NM*sizeof (double));
  bc->amplitude = g_malloc (N*sizeof (double *));
  for (i = 0; i < N; i++)
    bc->amplitude[i] = tmp + i*NM*sizeof (double);
  tmp = g_malloc0 (N*NM*sizeof (double));
  bc->phase = g_malloc (N*sizeof (double *));
  for (i = 0; i < N; i++)
    bc->phase[i] = tmp + i*NM*sizeof (double);

  FttCellFace face;
  face.cell = b->root;
  face.d = b->d;
  FttVector p;
  ftt_face_pos (&face, &p);
  FttComponent c = face.d < FTT_TOP ? FTT_Y : FTT_X;
  bc->size = ftt_cell_size (b->root);
  (&p.x)[c] -= bc->size/2.;
  bc->x = (&p.x)[c];

  if (fp->type == '{') {
    /* read embedded coefficients */
    guint j;
    fp->scope_max++;
    gts_file_next_token (fp);
    for (i = 0; i < N; i++) {
      for (j = 0; j < NM; j++) {
	while (fp->type == '\n') gts_file_next_token (fp);
	if (fp->type != GTS_INT && fp->type != GTS_FLOAT) {
	  gts_file_error (fp, "expecting a number (amplitude[%d][%d])", j, i);
	  return;
	}
	bc->amplitude[j][i] = atof (fp->token->str);
	gts_file_next_token (fp);
	if (fp->type != GTS_INT && fp->type != GTS_FLOAT) {
	  gts_file_error (fp, "expecting a number (phase[%d][%d])", j, i);
	  return;
	}
	bc->phase[j][i] = atof (fp->token->str);
	gts_file_next_token (fp);
      }
    }
    while (fp->type == '\n') gts_file_next_token (fp);
    if (fp->type != '}') {
      gts_file_error (fp, "expecting a closing brace");
      return;
    }
    fp->scope_max--;
    gts_file_next_token (fp);
  }
  else {
    /* extract FES2004 tidal coefficients */
    gchar * fname = getenv ("GFS_FES2004") ?
      g_strdup (getenv ("GFS_FES2004"))
      :
      g_strjoin ("/", GFS_MODULES_DIR, "tide.fes2004.nc", NULL);
    FILE * f = fopen (fname, "r");
    if (f == NULL) {
      gts_file_error (fp, "cannot open file `%s': %s", fname, strerror (errno));
      g_free (fname);
      return;
    }
    fclose (f);

    double * lon = g_malloc (N*sizeof (double));
    double * lat = g_malloc (N*sizeof (double));
    gdouble dh = bc->size/(N - 1);
    for (i = 0; i < N; i++, (&p.x)[c] += dh) {
      FttVector mp = p;
      gfs_simulation_map_inverse (GFS_SIMULATION (gfs_box_domain (b->box)), &mp);
      lon[i] = mp.x; lat[i] = mp.y;
    }

    fes2004_extraction (fname, N, lat, lon, bc->amplitude, bc->phase, 1);

    g_free (fname);
    g_free (lon);
    g_free (lat);
  }
}

static void bc_tide_destroy (GtsObject * o)
{
  GfsBcTide * bc = GFS_BC_TIDE (o);

  if (bc->amplitude) {
    g_free (bc->amplitude[0]);
    g_free (bc->amplitude);
  }
  if (bc->phase) {
    g_free (bc->phase[0]);
    g_free (bc->phase);
  }
    
  (* GTS_OBJECT_CLASS (gfs_bc_tide_class ())->parent_class->destroy) (o);
}

static tidal_wave wave[NM];

static gdouble amplitude_value (FttCellFace * face, GfsBcTide * bc, gdouble t)
{
  FttComponent c = face->d < FTT_TOP ? FTT_Y : FTT_X;
  FttVector p;
  ftt_face_pos (face, &p);
  guint i = floor (((&p.x)[c] - bc->x)/bc->size*(N - 1));
  g_assert (i < N - 1);
  if (bc->amplitude[i][2] < 0. && bc->amplitude[i+1][2] < 0.)
    return G_MAXDOUBLE;

  gdouble dh = bc->size/(N - 1);
  gdouble a = ((&p.x)[c] - bc->x - dh*i)/dh;
  if (bc->amplitude[i][2] < 0.)
    a = 1.;
  if (bc->amplitude[i+1][2] < 0.)
    a = 0.;

  gdouble prediction = 0.;
  guint j;
  for (j = 0; j < NM; j++) {
    fcomplex Z1, Z2, Z;
    Z1.reel = bc->amplitude[i][j]*cos (- bc->phase[i][j]*M_PI/180.);
    Z1.imag = bc->amplitude[i][j]*sin (- bc->phase[i][j]*M_PI/180.);
    Z2.reel = bc->amplitude[i+1][j]*cos (- bc->phase[i+1][j]*M_PI/180.);
    Z2.imag = bc->amplitude[i+1][j]*sin (- bc->phase[i+1][j]*M_PI/180.);
    Z.reel = (1. - a)*Z1.reel + a*Z2.reel;
    Z.imag = (1. - a)*Z1.imag + a*Z2.imag;
    prediction += Tide_prediction (t, wave[j], Z, 0, 0);
  }
  return prediction;
}

static gdouble tide_value (FttCellFace * f, GfsBc * b)
{
  /* fixme: this will not work for multilayer domains */
  guint d, nb = 0;
  FttCellNeighbors n;
  gdouble H;

  ftt_cell_neighbors (f->neighbor, &n);
  for (d = 0; d < FTT_NEIGHBORS_2D; d++)
    if (n.c[d] != NULL && GFS_CELL_IS_BOUNDARY(n.c[d]) && nb++ > 0)
      /* if the boundary cell is bounded by more than one boundary -> no flux */
      return 0.;

  H = gfs_face_interpolated_value (f, GFS_BC_TIDE (b)->h->i);
  if (H > 2e-3) { /* fixme: 2e-3 is an arbitrary constant which should be a parameter or sthg*/
    GfsSimulation * sim = GFS_SIMULATION (gfs_box_domain (b->b->box));
    gdouble a = amplitude_value (f, GFS_BC_TIDE (b), sim->time.t + deltat);
    if (a < G_MAXDOUBLE) {
      gdouble cg = sqrt (sim->physical_params.g*H);
      
      a *= sim->physical_params.g/5000.; /* fixme: reference depth is fixed at 5000 meters */
      return gfs_function_face_value (GFS_BC_VALUE (b)->val, f) +
	(FTT_FACE_DIRECT (f) ? -1. : 1.)*
	(GFS_VALUE (f->neighbor, GFS_BC_TIDE (b)->p) - a)*
	cg/sim->physical_params.g
#if !FTT_2D
	/H
#endif
	;
    }
  }
  return 0.;
}

static void tide (FttCellFace * f, GfsBc * b)
{
  g_assert (GFS_CELL_IS_GRADIENT_BOUNDARY (f->cell));
  g_assert (ftt_cell_neighbor (f->cell, f->d) == f->neighbor);
  GFS_VALUE (f->cell, b->v) = 2.*tide_value (f, b) - GFS_VALUE (f->neighbor, b->v);
}

static void homogeneous_tide (FttCellFace * f, GfsBc * b)
{
  g_assert (GFS_CELL_IS_GRADIENT_BOUNDARY (f->cell));
  GFS_VALUE (f->cell, b->v) = - GFS_VALUE (f->neighbor, b->v);
}

static void face_tide (FttCellFace * f, GfsBc * b)
{
  g_assert (GFS_CELL_IS_GRADIENT_BOUNDARY (f->cell));
  GFS_STATE (f->cell)->f[f->d].v = tide_value (f, b);
}

static void gfs_bc_tide_class_init (GtsObjectClass * klass)
{
  klass->write   = bc_tide_write;
  klass->read    = bc_tide_read;
  klass->destroy = bc_tide_destroy;
}

static void gfs_bc_tide_init (GfsBc * bc)
{
  bc->bc =             (FttFaceTraverseFunc) tide;
  bc->homogeneous_bc = (FttFaceTraverseFunc) homogeneous_tide;
  bc->face_bc =        (FttFaceTraverseFunc) face_tide;
}

GfsBcClass * gfs_bc_tide_class (void)
{
  static GfsBcClass * klass = NULL;

  if (klass == NULL) {
    GtsObjectClassInfo gfs_bc_tide_info = {
      "GfsBcTide",
      sizeof (GfsBcTide),
      sizeof (GfsBcClass),
      (GtsObjectClassInitFunc) gfs_bc_tide_class_init,
      (GtsObjectInitFunc) gfs_bc_tide_init,
      (GtsArgSetFunc) NULL,
      (GtsArgGetFunc) NULL
    };
    klass = gts_object_class_new (GTS_OBJECT_CLASS (gfs_bc_value_class ()),
				  &gfs_bc_tide_info);
  }

  return klass;
}

/* Initialize module */

/* only define gfs_module_name for "official" modules (i.e. those installed in
   GFS_MODULES_DIR) */
const gchar gfs_module_name[] = "tide";
const gchar * g_module_check_init (void);
void          gfs_module_read     (GtsFile * fp);
void          gfs_module_write    (FILE * fp);

const gchar * g_module_check_init (void)
{
  wave[0] = w2N2;
  wave[1] = wK1;
  wave[2] = wK2;
  wave[3] = wM2;
  wave[4] = wM4;
  wave[5] = wMf;
  wave[6] = wMm;
  wave[7] = wMSqm;
  wave[8] = wMtm;
  wave[9] = wN2;
  wave[10] = wO1;
  wave[11] = wP1;
  wave[12] = wQ1;
  wave[13] = wS2;
  gfs_bc_tide_class ();
  return NULL;
}

#define TIME_FORMAT "%Y/%m/%d-%T"

void gfs_module_read (GtsFile * fp)
{
  g_return_if_fail (fp != NULL);
  
  if (fp->type == '{') {
    GtsFileVariable var[] = {
      {GTS_STRING, "reference",  TRUE},
      {GTS_NONE}
    };
    var[0].data = &reference;
    gts_file_assign_variables (fp, var);
    if (fp->type == GTS_ERROR)
      return;

    if (var[0].set) {
      struct tm timeref;
      time_t tref, t0;
      memset (&timeref, 0, sizeof(struct tm));
      strptime ("1950/01/01-00:00:00-UTC", TIME_FORMAT, &timeref);
      tref = mktime (&timeref);
      memset (&timeref, 0, sizeof(struct tm));
      if (!strptime (reference, TIME_FORMAT, &timeref)) {
	gts_file_variable_error (fp, var, "reference", "error parsing date format");
	return;
      }
      t0 = mktime (&timeref);
      deltat = difftime (t0, tref)/3600.;
    }
  }
}

void gfs_module_write (FILE * fp)
{
  g_return_if_fail (fp != NULL);
 
  fprintf (fp, " { reference = %s }", reference);
}