File: GF_HelmholtzxForm.cpp

package info (click to toggle)
getdp 2.9.2+dfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 6,384 kB
  • ctags: 8,206
  • sloc: cpp: 55,135; fortran: 13,955; yacc: 8,493; lex: 746; sh: 56; ansic: 34; awk: 33; makefile: 24
file content (160 lines) | stat: -rw-r--r-- 5,780 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
// GetDP - Copyright (C) 1997-2016 P. Dular and C. Geuzaine, University of Liege
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <getdp@onelab.info>.
//
// Contributor(s):
//   Ruth Sabariego
//

#include <math.h>
#include "ProData.h"
#include "ProDefine.h"
#include "BF.h"
#include "GF.h"
#include "Gauss.h"
#include "GeoData.h"
#include "Message.h"

#define SQU(a)     ((a)*(a)) 
#define CUB(a)     ((a)*(a)*(a)) 
#define ONE_OVER_TWO_PI    1.5915494309189534E-01

#define MAX_NODES  6 
#define EPSILON    1.e-10

/* ------------------------------------------------------------------------ */
/*  G F _ H e l m h o l t z x F o r m                                       */
/* ------------------------------------------------------------------------ */

void GF_HelmholtzxForm(GF_ARGX)
{
  double   xs[MAX_NODES], ys[MAX_NODES], zs[MAX_NODES], u[3], v[3], n[3], l2[2];
  double   xl, yl, zl ;
  int      i, j = 1 ;
  int      i_IntPoint, NGT_Points = 7;
  double   a, b, c, d, us, vs, ws, usi, vsi, wsi, Ri, wghti;
  double   s0m, s0p, s1m, s1p, s2m, s2p, t00, t10, t20, t0m, t0p, t1p;
  double   r00, r10, r20, r0p, r0m, r1p, f0, f1, f2, B0, B1, B2 ;
  double   IS, valr, vali ;

  switch ((int)Fct->Para[0]) {

  case _3D :
    
    switch (Element->ElementSource->Type) {
      
    case TRIANGLE :
    case QUADRANGLE :  
      xs[0] = Element->ElementSource->x[0] ; ys[0] = Element->ElementSource->y[0] ;
      zs[0] = Element->ElementSource->z[0] ;
      xs[1] = Element->ElementSource->x[1] ; ys[1] = Element->ElementSource->y[1] ;
      zs[1] = Element->ElementSource->z[1] ;
      xs[2] = Element->ElementSource->x[2] ; ys[2] = Element->ElementSource->y[2] ;
      zs[2] = Element->ElementSource->z[2] ;
      
      valr = 0. ;
      vali = 0. ;
      IS = 0. ;

      if (Element->ElementSource->Type ==  QUADRANGLE) {
	xs[3] = Element->ElementSource->x[3] ; ys[3] = Element->ElementSource->y[3] ;
	zs[3] = Element->ElementSource->z[3] ;
	j = 0 ;
      };
      
      for(i = j; i < 2; i++){      
	/* triangle side lengths */
	a = sqrt(SQU(xs[1]-xs[0]) + SQU(ys[1]-ys[0]) +  SQU(zs[1]-zs[0]));
	b = sqrt(SQU(xs[2]-xs[1]) + SQU(ys[2]-ys[1]) +  SQU(zs[2]-zs[1]));
	c = sqrt(SQU(xs[2]-xs[0]) + SQU(ys[2]-ys[0]) +  SQU(zs[2]-zs[0]));
	
	/* local system (u,v,w) centered at (xs[0],ys[0],zs[0]) */
	u[0] = (xs[1]-xs[0])/a; u[1] = (ys[1]-ys[0])/a; u[2] = (zs[1]-zs[0])/a;
	
	/* triangle normal */
	Geo_CreateNormal(Element->ElementSource->Type,xs,ys,zs,n);
        
	v[0] = n[1]*u[2]-n[2]*u[1]; v[1] = n[2]*u[0]-n[0]*u[2]; v[2] = n[0]*u[1]-n[1]*u[0];
	
	l2[0] = (xs[2]-xs[0])*u[0] + (ys[2]-ys[0])*u[1] + (zs[2]-zs[0])*u[2]; /*u2 coordinate*/
	l2[1] = (xs[2]-xs[0])*v[0] + (ys[2]-ys[0])*v[1] + (zs[2]-zs[0])*v[2];  /*triangle height, v2 coordinate*/
	
	/* local coordinates of the observation point (xl, yl, zl)*/ 
	xl = u[0] * (x-xs[0]) +  u[1] * (y-ys[0]) + u[2] * (z-zs[0]);
	yl = v[0] * (x-xs[0]) +  v[1] * (y-ys[0]) + v[2] * (z-zs[0]);
	zl = n[0] * (x-xs[0]) +  n[1] * (y-ys[0]) + n[2] * (z-zs[0]);
	
	s0m = -( (a-xl) * (a-l2[0]) + yl*l2[1] ) / b;   s0p = s0m + b;
	s1p = ( xl * l2[0] + yl * l2[1] ) / c;   s1m = s1p - c; s2m = - xl; s2p = a - xl;
	
	/*distance observation point projection on triangle plane to triangle local vertices*/
	t00 = (yl * (l2[0]-a) + l2[1] * (a-xl)) / b;
	t10 = (xl * l2[1] - yl * l2[0]) / c;
	t20 = yl;
	t0m = sqrt((a-xl)*(a-xl) + yl*yl); 
	t0p = sqrt((l2[0]-xl)*(l2[0]-xl) + (l2[1]-yl)*(l2[1]-yl)); 
	t1p = sqrt(xl*xl + yl*yl);
	
	/* minimum distances from the observation point to each triangle side*/
	r00 = sqrt(SQU(t00) + SQU(zl));
	r10 = sqrt(SQU(t10) + SQU(zl));
	r20 = sqrt(SQU(t20) + SQU(zl));
	
	/* distances from observation point to the vertices*/
	r0p = sqrt(SQU(t0p) + SQU(zl));      
	r0m = sqrt(SQU(t0m) + SQU(zl));
	r1p = sqrt(SQU(t1p) + SQU(zl));
	
	/* intermediate functions */
        
	f0 = r00 <= EPSILON ? 0 : log((r0p + s0p) / (r0m + s0m));
	f1 = r10 <= EPSILON ? 0 : log((r1p + s1p) / (r0p + s1m));
	f2 = r20 <= EPSILON ? 0 : log((r0m + s2p) / (r1p + s2m));
	
	B0 = fabs(t00) <= EPSILON ? 0 : atan(t00*s0p/(SQU(r00)+fabs(zl)*r0p))-atan(t00*s0m/(SQU(r00)+fabs(zl)*r0m));
	B1 = fabs(t10) <= EPSILON ? 0 : atan(t10*s1p/(SQU(r10)+fabs(zl)*r1p))-atan(t10*s1m/(SQU(r10)+fabs(zl)*r0p));
	B2 = fabs(t20) <= EPSILON ? 0 : atan(t20*s2p/(SQU(r20)+fabs(zl)*r0m))-atan(t20*s2m/(SQU(r20)+fabs(zl)*r1p));
	d = a * l2[1]; /* Double aire a cause de normalization */
	
	IS +=  ONE_OVER_TWO_PI * (-fabs(zl)*(B0+B1+B2) + t00*f0+t10*f1+t20*f2)/d; /* 1/r integral solution*/
	
	/* Gauss Numerical Integration of (exp(Fct->Para[1]*R)-1)/R */
	for (i_IntPoint = 1; i_IntPoint <= NGT_Points; i_IntPoint++){
	  Gauss_Triangle(NGT_Points,i_IntPoint,&us,&vs,&ws,&wghti);
	  usi = u[0]*us + u[1]*vs + u[2]*ws ;
	  vsi = v[0]*us + v[1]*vs + v[2]*ws ;
	  wsi = n[0]*us + n[1]*vs + n[2]*ws ;
	  Ri = sqrt( SQU(xl-usi) + SQU(yl-vsi) + SQU(zl-wsi) ) ;
	  
	  valr += Ri > EPSILON ? (wghti*(cos(Fct->Para[1]*Ri)-1)/Ri): 0 ;
	  vali += Ri > EPSILON ? (-wghti*sin(Fct->Para[1]*Ri)/Ri): (-wghti * Fct->Para[1]); 
	}
	
	valr = d * valr/2;
	vali = d * vali/2;
	
	Val->Val[0] = IS + valr ;
	Val->Val[MAX_DIM] = vali ; /* Imaginary part. Numerical integral */
	
	if (j == 0){
	  xs[1] = xs[2]; ys[1] = ys[2]; zs[1] = zs[2];
	  xs[2] = xs[3]; ys[2] = ys[3]; zs[2] = zs[3];
	}
      }
      if (j == 0){ Val->Val[0] = (Val->Val[0])/2; }
      Val->Type = SCALAR;
      break ;
      
    default :
      Message::Error("Unknown Element Type (%s) for 'GF_HelmholtzxForm'",
		 Get_StringForDefine(Element_Type, Element->ElementSource->Type));
    }
    break ;
    
  default :
    Message::Error("Unknown Dimension (%d) for 'GF_HelmholtzxForm'", 
	       (int)Fct->Para[0]);
    
  }
}