1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
// GetDP - Copyright (C) 1997-2018 P. Dular and C. Geuzaine, University of Liege
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/getdp/getdp/issues
#include "ProData.h"
#include "GeoData.h"
#include "DofData.h"
#include "Cal_Quantity.h"
#include "Cal_Value.h"
#include "Cal_AssembleTerm.h"
#include "Get_DofOfElement.h"
#include "Get_Geometry.h"
#include "Message.h"
extern struct Problem Problem_S ;
extern struct CurrentData Current ;
/* ------------------------------------------------------------------------ */
/* C a l _ G l o b a l T e r m O f F e m F o r m u l a t i o n */
/* ------------------------------------------------------------------------ */
#define OFFSET (iHar < NbrHar-OffSet)? 0 : iHar-NbrHar+OffSet+2-iHar%2
void MH_Get_InitData(int Case, int NbrPoints, int *NbrPointsX_P,
double ***H_P, double ****HH_P, double **t_P, double **w_P);
void Cal_GlobalTermOfFemEquation(int Num_Region,
struct EquationTerm * EquationTerm_P,
struct QuantityStorage * QuantityStorage_P0,
struct QuantityStorage * QuantityStorageNoDof,
struct Dof * DofForNoDof_P)
{
struct FemGlobalTermActive * FI ;
struct QuantityStorage * QuantityStorageEqu_P, * QuantityStorageDof_P ;
struct Value vBFxDof [1] ;
struct Element Element ;
int k ;
double Coefficient [NBR_MAX_HARMONIC] ;
void (*Function_AssembleTerm)(struct Dof * Equ, struct Dof * Dof, double Val[])=0 ;
List_T * WholeQuantity_L;
struct WholeQuantity *WholeQuantity_P0 ;
int i_WQ ;
struct Expression * Expression_P;
int NbrPointsX ;
double **H, ***HH, *time, *weight, Factor=1., plus, plus0;
double one=1.0 ;
int j=0,iPul, ZeroHarmonic, DcHarmonic;
int NbrHar, iTime, iHar, jHar, OffSet=0 ;
double Val_Dof [NBR_MAX_HARMONIC] ;
double E_D [NBR_MAX_HARMONIC][NBR_MAX_HARMONIC] ;
struct Dof * Dof;
struct Value t_Value;
gMatrix * Jac;
struct QuantityStorage * QuantityStorage_P;
FI = EquationTerm_P->Case.GlobalTerm.Active ;
Element.Num = NO_ELEMENT ;
switch (EquationTerm_P->Case.GlobalTerm.Term.TypeTimeDerivative) {
case NODT_ : Function_AssembleTerm = Cal_AssembleTerm_NoDt ; break ;
case DTDOF_ : Function_AssembleTerm = Cal_AssembleTerm_DtDof ; break ;
case DT_ : Function_AssembleTerm = Cal_AssembleTerm_Dt ; break ;
case DTDTDOF_ : Function_AssembleTerm = Cal_AssembleTerm_DtDtDof ; break ;
case DTDT_ : Function_AssembleTerm = Cal_AssembleTerm_DtDt ; break ;
case DTDTDTDOF_ : Function_AssembleTerm = Cal_AssembleTerm_DtDtDtDof ; break ;
case DTDTDTDTDOF_ : Function_AssembleTerm = Cal_AssembleTerm_DtDtDtDtDof ; break ;
case DTDTDTDTDTDOF_ : Function_AssembleTerm = Cal_AssembleTerm_DtDtDtDtDtDof ; break ;
case NEVERDT_ : Function_AssembleTerm = Cal_AssembleTerm_NeverDt ; break ;
case JACNL_ : Function_AssembleTerm = Cal_AssembleTerm_JacNL ; break ;
case DTDOFJACNL_ : Function_AssembleTerm = Cal_AssembleTerm_DtDofJacNL ; break ;
// nleigchange
case NLEIG1DOF_ : Function_AssembleTerm = Cal_AssembleTerm_NLEig1Dof ; break ;
case NLEIG2DOF_ : Function_AssembleTerm = Cal_AssembleTerm_NLEig2Dof ; break ;
case NLEIG3DOF_ : Function_AssembleTerm = Cal_AssembleTerm_NLEig3Dof ; break ;
case NLEIG4DOF_ : Function_AssembleTerm = Cal_AssembleTerm_NLEig4Dof ; break ;
case NLEIG5DOF_ : Function_AssembleTerm = Cal_AssembleTerm_NLEig5Dof ; break ;
case NLEIG6DOF_ : Function_AssembleTerm = Cal_AssembleTerm_NLEig6Dof ; break ;
default : Message::Error("Unknown type of operator for Global term"); return;
}
//+++ Num_Region, QuantityStorage_P0: not used any more
QuantityStorageEqu_P = FI->QuantityStorageEqu_P;
QuantityStorageDof_P = FI->QuantityStorageDof_P;
if (!QuantityStorageDof_P) {
QuantityStorageDof_P = QuantityStorageNoDof ;
Dof_InitDofForNoDof(DofForNoDof_P, Current.NbrHar) ;
QuantityStorageDof_P->BasisFunction[0].Dof = DofForNoDof_P ;
}
// search for MHBilinear-term(s)
WholeQuantity_L = EquationTerm_P->Case.GlobalTerm.Term.WholeQuantity ;
WholeQuantity_P0 = (struct WholeQuantity*)List_Pointer(WholeQuantity_L, 0) ;
i_WQ = 0 ; while ( i_WQ < List_Nbr(WholeQuantity_L) &&
(WholeQuantity_P0 + i_WQ)->Type != WQ_MHBILINEAR) i_WQ++ ;
if (i_WQ < List_Nbr(WholeQuantity_L) ) { // Multi-harmonic case
if(Message::GetVerbosity() == 10)
Message::Info("MHBilinear in Global term");
if (QuantityStorageEqu_P != QuantityStorageDof_P){
Message::Error("Global term with MHBilinear is not symmetric ?!");
return;
}
QuantityStorage_P = QuantityStorageEqu_P ;
if (List_Nbr(WholeQuantity_L) == 3){
if (i_WQ != 0 ||
EquationTerm_P->Case.GlobalTerm.Term.DofIndexInWholeQuantity != 1 ||
(WholeQuantity_P0 + 2)->Type != WQ_BINARYOPERATOR ||
(WholeQuantity_P0 + 2)->Case.Operator.TypeOperator != OP_TIME){
Message::Error("Not allowed expression in Global term with MHBilinear (case 1)");
return;
}
Factor = 1.;
}
else {
Message::Error("Not allowed expression in Global term with MHBilinear (%d terms) ",
List_Nbr(WholeQuantity_L));
return;
}
if (EquationTerm_P->Case.GlobalTerm.Term.TypeTimeDerivative != JACNL_){
Message::Error("MHBilinear can only be used with JACNL") ;
return;
}
Expression_P = (struct Expression *)List_Pointer
(Problem_S.Expression, (WholeQuantity_P0 + i_WQ)->Case.MHBilinear.Index) ;
MH_Get_InitData(2, (WholeQuantity_P0 + i_WQ)->Case.MHBilinear.NbrPoints,
&NbrPointsX, &H, &HH,
&time, &weight) ;
NbrHar = Current.NbrHar ;
/* special treatment of DC-term and associated dummy sinus-term */
DcHarmonic = NbrHar;
ZeroHarmonic = 0;
for (iPul = 0 ; iPul < NbrHar/2 ; iPul++)
if (!Current.DofData->Val_Pulsation[iPul]){
DcHarmonic = 2*iPul ;
ZeroHarmonic = 2*iPul+1 ;
break;
}
for (k = 0 ; k < Current.NbrHar ; k+=2)
Dof_GetComplexDofValue
(QuantityStorage_P->FunctionSpace->DofData,
QuantityStorage_P->BasisFunction[j].Dof + k/2*gCOMPLEX_INCREMENT,
&Val_Dof[k], &Val_Dof[k+1]) ;
/* time integration over fundamental period */
for (iHar = 0 ; iHar < NbrHar ; iHar++)
for (jHar = OFFSET ; jHar <= iHar ; jHar++)
E_D[iHar][jHar] = 0. ;
Current.NbrHar = 1; /* evaluation in time domain */
for (iTime = 0 ; iTime < NbrPointsX ; iTime++) {
t_Value.Type = SCALAR;
t_Value.Val[0] = 0;
for (iHar = 0 ; iHar < NbrHar ; iHar++)
t_Value.Val[0] += H[iTime][iHar] * Val_Dof[iHar] ;
// To generalize: Function in MHBilinear has 1 argument (e.g. Resistance[{Iz}])
Get_ValueOfExpression(Expression_P, QuantityStorage_P0,
Current.u, Current.v, Current.w, &t_Value, 1);
for (iHar = 0 ; iHar < NbrHar ; iHar++)
for (jHar = OFFSET ; jHar <= iHar ; jHar++)
E_D[iHar][jHar] += HH[iTime][iHar][jHar] * t_Value.Val[0] ;
} // for i_IntPoint...
Current.NbrHar = NbrHar ;
Jac = &Current.DofData->Jac;
Dof = QuantityStorage_P->BasisFunction[0].Dof ;
for (iHar = 0 ; iHar < NbrHar ; iHar++)
for (jHar = OFFSET ; jHar <= iHar ; jHar++){
plus = plus0 = Factor * E_D[iHar][jHar] ;
if(jHar==DcHarmonic && iHar!=DcHarmonic) { plus0 *= 1. ; plus *= 2. ;}
Dof_AssembleInMat(Dof+iHar, Dof+jHar, 1, &plus, Jac, NULL) ;
if(iHar != jHar)
Dof_AssembleInMat(Dof+jHar, Dof+iHar, 1, &plus0, Jac, NULL) ;
}
/* dummy 1's on the diagonal for sinus-term of dc-component */
if (ZeroHarmonic) {
Dof = QuantityStorage_P->BasisFunction[0].Dof + ZeroHarmonic ;
Dof_AssembleInMat(Dof, Dof, 1, &one, Jac, NULL) ;
}
}
else { // standard (non multi-harmonic) bilinear term
vBFxDof[0].Type = SCALAR ; vBFxDof[0].Val[0] = 1. ;
if(Current.NbrHar > 1) Cal_SetHarmonicValue(&vBFxDof[0]) ;
Cal_WholeQuantity
(Current.Element = &Element, QuantityStorage_P0,
EquationTerm_P->Case.GlobalTerm.Term.WholeQuantity,
Current.u = 0., Current.v = 0., Current.w = 0.,
EquationTerm_P->Case.GlobalTerm.Term.DofIndexInWholeQuantity,
1, vBFxDof) ;
for (k = 0 ; k < Current.NbrHar ; k++)
Coefficient[k] = vBFxDof[0].Val[MAX_DIM*k] ;
Function_AssembleTerm
(QuantityStorageEqu_P->BasisFunction[0].Dof,
QuantityStorageDof_P->BasisFunction[0].Dof, Coefficient) ;
}
}
#undef OFFSET
void Cal_GlobalTermOfFemEquation_old(int Num_Region,
struct EquationTerm * EquationTerm_P,
struct QuantityStorage * QuantityStorage_P0,
struct QuantityStorage * QuantityStorageNoDof,
struct Dof * DofForNoDof_P)
{
struct QuantityStorage * QuantityStorageEqu_P, * QuantityStorageDof_P ;
struct Value vBFxDof [1] ;
struct Element Element ;
int k ;
double Coefficient [NBR_MAX_HARMONIC] ;
void (*Function_AssembleTerm)(struct Dof * Equ, struct Dof * Dof, double Val[]) = 0;
Element.Num = NO_ELEMENT ;
switch (EquationTerm_P->Case.GlobalTerm.Term.TypeTimeDerivative) {
case NODT_ : Function_AssembleTerm = Cal_AssembleTerm_NoDt ; break ;
case DTDOF_ : Function_AssembleTerm = Cal_AssembleTerm_DtDof ; break ;
case DT_ : Function_AssembleTerm = Cal_AssembleTerm_Dt ; break ;
case DTDTDOF_ : Function_AssembleTerm = Cal_AssembleTerm_DtDtDof ; break ;
case DTDT_ : Function_AssembleTerm = Cal_AssembleTerm_DtDt ; break ;
case DTDTDTDOF_ : Function_AssembleTerm = Cal_AssembleTerm_DtDtDtDof ; break ;
case DTDTDTDTDOF_ : Function_AssembleTerm = Cal_AssembleTerm_DtDtDtDtDof ; break ;
case DTDTDTDTDTDOF_: Function_AssembleTerm = Cal_AssembleTerm_DtDtDtDtDtDof ; break ;
case NEVERDT_ : Function_AssembleTerm = Cal_AssembleTerm_NeverDt ; break ;
case JACNL_ : Function_AssembleTerm = Cal_AssembleTerm_JacNL ; break ;
case DTDOFJACNL_ : Function_AssembleTerm = Cal_AssembleTerm_DtDofJacNL ; break ;
// nleigchange
case NLEIG1DOF_ : Function_AssembleTerm = Cal_AssembleTerm_NLEig1Dof ; break ;
case NLEIG2DOF_ : Function_AssembleTerm = Cal_AssembleTerm_NLEig2Dof ; break ;
case NLEIG3DOF_ : Function_AssembleTerm = Cal_AssembleTerm_NLEig3Dof ; break ;
case NLEIG4DOF_ : Function_AssembleTerm = Cal_AssembleTerm_NLEig4Dof ; break ;
case NLEIG5DOF_ : Function_AssembleTerm = Cal_AssembleTerm_NLEig5Dof ; break ;
case NLEIG6DOF_ : Function_AssembleTerm = Cal_AssembleTerm_NLEig6Dof ; break ;
default : Message::Error("Unknown type of operator for Global term") ; return ;
}
QuantityStorageEqu_P = QuantityStorage_P0 +
EquationTerm_P->Case.GlobalTerm.Term.DefineQuantityIndexEqu ;
if (EquationTerm_P->Case.GlobalTerm.Term.DefineQuantityIndexDof >= 0) {
QuantityStorageDof_P = QuantityStorage_P0 +
EquationTerm_P->Case.GlobalTerm.Term.DefineQuantityIndexDof ;
}
else {
QuantityStorageDof_P = QuantityStorageNoDof ;
Dof_InitDofForNoDof(DofForNoDof_P, Current.NbrHar) ;
QuantityStorageDof_P->BasisFunction[0].Dof = DofForNoDof_P ;
}
vBFxDof[0].Type = SCALAR ; vBFxDof[0].Val[0] = 1. ;
if(Current.NbrHar > 1) Cal_SetHarmonicValue(&vBFxDof[0]) ;
Cal_WholeQuantity
(Current.Element = &Element, QuantityStorage_P0,
EquationTerm_P->Case.GlobalTerm.Term.WholeQuantity,
Current.u = 0., Current.v = 0., Current.w = 0.,
EquationTerm_P->Case.GlobalTerm.Term.DofIndexInWholeQuantity,
1, vBFxDof) ;
for (k = 0 ; k < Current.NbrHar ; k++)
Coefficient[k] = vBFxDof[0].Val[MAX_DIM*k] ;
Function_AssembleTerm
(QuantityStorageEqu_P->BasisFunction[0].Dof,
QuantityStorageDof_P->BasisFunction[0].Dof, Coefficient) ;
}
|