1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
// GetDP - Copyright (C) 1997-2018 P. Dular and C. Geuzaine, University of Liege
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/getdp/getdp/issues
//
// Contributor(s):
// Michael Asam
#include <stdio.h>
#include <limits>
#include <math.h>
#include "ProData.h"
#include "DofData.h"
#include "SolvingOperations.h"
#include "Message.h"
void Cal_SolutionErrorRatio(gVector *dx, gVector *x,
double reltol, double abstol,
int NormType, double *ErrorRatio)
{
int xLength;
double AbsVal_x, AbsVal_dx, ImagVal_x, ImagVal_dx;
double *ErrorRatioVec;
bool Is_NaN_or_Inf;
LinAlg_GetVectorSize(dx, &xLength);
ErrorRatioVec = new double[xLength];
*ErrorRatio = 0.;
Is_NaN_or_Inf = false;
for (int i = 0; i < xLength; i++) {
if (gSCALAR_SIZE == 1)
{
LinAlg_GetAbsDoubleInVector(&AbsVal_x, x, i) ;
LinAlg_GetAbsDoubleInVector(&AbsVal_dx, dx, i) ;
}
if (gSCALAR_SIZE == 2)
{
LinAlg_GetComplexInVector(&AbsVal_x, &ImagVal_x, x, i, -1);
LinAlg_GetComplexInVector(&AbsVal_dx, &ImagVal_dx, dx, i, -1);
AbsVal_x = sqrt( AbsVal_x*AbsVal_x + ImagVal_x*ImagVal_x);
AbsVal_dx = sqrt( AbsVal_dx*AbsVal_dx + ImagVal_dx*ImagVal_dx);
}
ErrorRatioVec[i] = AbsVal_dx / (abstol + reltol * AbsVal_x);
if ( ErrorRatioVec[i] != ErrorRatioVec[i] || // Solution is NaN
ErrorRatioVec[i] == -std::numeric_limits<double>::infinity() || // Solution is -Inf
ErrorRatioVec[i] == std::numeric_limits<double>::infinity() ) // Solution is Inf
Is_NaN_or_Inf = true;
}
if ( Is_NaN_or_Inf ) {
//Message::Error("No valid solution found (NaN or Inf)!"); // kj+++
Message::Warning("No valid solution found (NaN or Inf)!");
*ErrorRatio = std::numeric_limits<double>::quiet_NaN();
}
else{
// Calculating the norm of the error ratio vector
switch (NormType){
case LINFNORM:
for (int i = 0; i < xLength; i++) {
if (ErrorRatioVec[i] > *ErrorRatio)
*ErrorRatio = ErrorRatioVec[i];
}
break;
case L1NORM:
for (int i = 0; i < xLength; i++) {
*ErrorRatio += ErrorRatioVec[i];
}
break;
case MEANL1NORM:
for (int i = 0; i < xLength; i++) {
*ErrorRatio += ErrorRatioVec[i];
}
*ErrorRatio /= xLength;
break;
case L2NORM:
for (int i = 0; i < xLength; i++) {
*ErrorRatio += ErrorRatioVec[i] * ErrorRatioVec[i];
}
*ErrorRatio = sqrt(*ErrorRatio);
break;
case MEANL2NORM:
for (int i = 0; i < xLength; i++) {
*ErrorRatio += ErrorRatioVec[i] * ErrorRatioVec[i];
}
*ErrorRatio = sqrt(*ErrorRatio / xLength);
break;
default:
Message::Error("Wrong error norm in Cal_SolutionErrorRatio");
break;
}
}
delete [] ErrorRatioVec;
}
/* ------------------------------------------------------------------------ */
/* C a l _ S o l u t i o n E r r o r */
/* ------------------------------------------------------------------------ */
void Cal_SolutionError(gVector *dx, gVector *x, int diff, double *MeanError)
{
// This is not a very good implementation: it should be replaced with
// Cal_SolutionErrorRatio above
int i, n;
double valx, valdx, valxi = 0., valdxi = 0.,errsqr = 0., xmoy = 0., dxmoy = 0.;
double tol, nvalx, nvaldx ;
//bool Is_NaN_or_Inf=0; // kj+++
LinAlg_GetVectorSize(dx, &n);
if (gSCALAR_SIZE == 1)
for (i=0 ; i<n ; i++) {
LinAlg_GetAbsDoubleInVector(&valx, x, i) ;
LinAlg_GetAbsDoubleInVector(&valdx, dx, i) ;
xmoy += valx ;
if(diff) dxmoy += (valdx-valx) ;
else dxmoy += valdx ;
}
if (gSCALAR_SIZE == 2)
for (i=0 ; i<n ; i++) {
LinAlg_GetComplexInVector(&valx, &valxi, x, i, -1);
LinAlg_GetComplexInVector(&valdx, &valdxi, dx, i, -1);
xmoy += sqrt(valx*valx+valxi*valxi) ;
if(diff) dxmoy += sqrt((valdx-valx)*(valdx-valx)+(valdxi-valxi)*(valdxi-valxi)) ;
else dxmoy += sqrt(valdx*valdx + valdxi*valdxi) ;
}
xmoy /= (double)n ;
dxmoy /= (double)n ;
if (xmoy > 1.e-30) {
tol = xmoy*1.e-10 ;
//tol = 1e200; // kj+++
//tol=(tol<1e-3)?1e-3:tol; // kj+++
if (gSCALAR_SIZE == 1)
for (i=0 ; i<n ; i++){
LinAlg_GetAbsDoubleInVector(&valx, x, i) ;
LinAlg_GetAbsDoubleInVector(&valdx, dx, i) ;
if(diff){
if (valx > tol) errsqr += fabs(valdx-valx)/valx ;
else errsqr += fabs(valdx-valx) ;
}
else{
if (valx > tol) errsqr += valdx/valx ;
else errsqr += valdx ;
}
}
if (gSCALAR_SIZE == 2)
for (i=0 ; i<n ; i++) {
LinAlg_GetComplexInVector(&valx, &valxi, x, i, -1);
LinAlg_GetComplexInVector(&valdx, &valdxi, dx, i, -1);
nvalx = sqrt(valx*valx+valxi*valxi) ;
nvaldx = sqrt(valdx*valdx+valdxi*valdxi) ;
if(diff){
if (nvalx > tol)
errsqr += sqrt((valdx-valx)*(valdx-valx)+(valdxi-valxi)*(valdxi-valxi))/nvalx ;
else
errsqr += sqrt((valdx-valx)*(valdx-valx)+(valdxi-valxi)*(valdxi-valxi));
}
else{
if (nvalx > tol) errsqr += nvaldx/nvalx ;
else errsqr += nvaldx ;
}
}
*MeanError = errsqr/(double)n ;
}
else{
if (dxmoy > 1.e-30)
*MeanError = 1. ;
else
*MeanError = 0. ;
}
/* // kj+++
if ( *MeanError != *MeanError || // Solution is NaN
*MeanError == -std::numeric_limits<double>::infinity() || // Solution is -Inf
*MeanError == std::numeric_limits<double>::infinity() ) // Solution is Inf
Is_NaN_or_Inf = true;
if ( Is_NaN_or_Inf ) {
Message::Error("No valid solution found (NaN or Inf)!");
*MeanError = std::numeric_limits<double>::quiet_NaN();
}
*/
}
|