1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
// GetDP - Copyright (C) 1997-2018 P. Dular and C. Geuzaine, University of Liege
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/getdp/getdp/issues
#include "GetDPConfig.h"
#include "ProData.h"
#include "F.h"
#include "Message.h"
extern struct CurrentData Current ;
#if defined(HAVE_GMSH)
#include <gmsh/GmshGlobal.h>
#include <gmsh/PView.h>
#include <gmsh/PViewData.h>
void F_Field(F_ARG)
{
if(A->Type != VECTOR){
Message::Error("Field[] expects XYZ coordinates as argument");
return;
}
if(PView::list.empty()){
Message::Error("No views available to interpolate from");
return;
}
double x = A->Val[0];
double y = A->Val[1];
double z = A->Val[2];
if(Fct->NbrArguments > 1){
Message::Error("Time and additional arguments are not supported in Field: "
"use {Scalar,Vector,Tensor}Field instead");
return;
}
for (int k = 0; k < Current.NbrHar; k++)
for (int j = 0; j < 9; j++)
V->Val[MAX_DIM * k + j] = 0. ;
V->Type = SCALAR;
std::vector<int> iview;
if(!Fct->NbrParameters){
// use last view by default
iview.push_back(PView::list.back()->getTag());
}
else{
for(int i = 0; i < Fct->NbrParameters; i++)
iview.push_back(Fct->Para[i]);
}
double N = 0.;
// add the values from all specified views
for(unsigned int i = 0; i < iview.size(); i++){
PView *v = PView::getViewByTag(iview[i]);
if(!v){
Message::Error("View with tag %d does not exist", iview[i]);
return;
}
PViewData *data = v->getData();
std::vector<double> val(9 * data->getNumTimeSteps());
if(data->searchScalar(x, y, z, &val[0])){
V->Val[0] += val[0];
if(Current.NbrHar == 2 && data->getNumTimeSteps() > 1)
V->Val[MAX_DIM] += val[1];
V->Type = SCALAR;
N += 1.;
}
else if(data->searchVector(x, y, z, &val[0])){
for(int j = 0; j < 3; j++)
V->Val[j] += val[j];
if(Current.NbrHar == 2 && data->getNumTimeSteps() > 1){
for(int j = 0; j < 3; j++)
V->Val[MAX_DIM + j] += val[3 + j];
}
V->Type = VECTOR;
N += 1.;
}
else if(data->searchTensor(x, y, z, &val[0])){
for(int j = 0; j < 9; j++)
V->Val[j] += val[j];
if(Current.NbrHar == 2 && data->getNumTimeSteps() > 1){
for(int j = 0; j < 9; j++)
V->Val[MAX_DIM + j] += val[9 + j];
}
V->Type = TENSOR;
N += 1.;
}
else{
Message::Error("Did not find data at point (%g,%g,%g) in View with tag %d",
x, y, z, iview[i]);
}
}
if(N > 1.){
Message::Debug("Averaging data %g times on vertex (%g,%g,%g)", N, x, y, z);
for (int k = 0; k < Current.NbrHar; k++)
for (int j = 0; j < 9; j++)
V->Val[MAX_DIM * k + j] = 0. ;
}
}
static void F_X_Field(F_ARG, int type, bool complex, bool grad=false)
{
if(A->Type != VECTOR){
Message::Error("Field[] expects XYZ coordinates as argument");
return;
}
if(PView::list.empty()){
Message::Error("No views available to interpolate from");
return;
}
double x = A->Val[0];
double y = A->Val[1];
double z = A->Val[2];
int numComp = (type == SCALAR) ? (grad ? 3 : 1) :
(type == VECTOR) ? (grad ? 9 : 3) : 9; // TODO: grad of tensor
int NbrArg = Fct->NbrArguments ;
int TimeStep = 0, MatchElement = 0;
if(NbrArg >= 2){
if((A+1)->Type != SCALAR){
Message::Error("Expected scalar second argument (time step)");
return;
}
TimeStep = (int)(A+1)->Val[0];
}
if(NbrArg >= 3){
if((A+2)->Type != SCALAR){
Message::Error("Expected scalar second argument (element matching flag)");
return;
}
MatchElement = (int)(A+2)->Val[0];
}
// TODO: we could treat the third arguement as a tolerance (and call
// searchScalarWithTol & friends)
// Complex{Scalar,Vector,Tensor}Field assume that the Gmsh view contains real
// and imaginary parts for each step
if(complex) TimeStep *= 2;
for (int k = 0; k < Current.NbrHar; k++)
for (int j = 0; j < numComp; j++)
V->Val[MAX_DIM * k + j] = 0. ;
V->Type = (numComp == 1) ? SCALAR : (numComp == 3) ? VECTOR : TENSOR;
std::vector<int> iview;
if(!Fct->NbrParameters){
// use last view by default
iview.push_back(PView::list.back()->getTag());
}
else{
for(int i = 0; i < Fct->NbrParameters; i++)
iview.push_back(Fct->Para[i]);
}
int qn = 0;
double *qx = 0, *qy = 0, *qz = 0;
if(Current.Element){
qn = MatchElement ? Current.Element->GeoElement->NbrNodes : 0;
qx = Current.Element->x;
qy = Current.Element->y;
qz = Current.Element->z;
}
double N = 0.;
// add the values from all specified views
for(unsigned int i = 0; i < iview.size(); i++){
PView *v = PView::getViewByTag(iview[i]);
if(!v){
Message::Error("View with tag %d does not exist", iview[i]);
return;
}
PViewData *data = v->getData();
if(TimeStep < 0 || TimeStep >= data->getNumTimeSteps()){
Message::Error("Invalid step %d in View with tag %d", TimeStep, iview[i]);
continue;
}
std::vector<double> val(numComp * data->getNumTimeSteps());
bool found = false;
switch(type){
case SCALAR :
if(data->searchScalar(x, y, z, &val[0], -1, 0, qn, qx, qy, qz, grad))
found = true;
break;
case VECTOR :
if(data->searchVector(x, y, z, &val[0], -1, 0, qn, qx, qy, qz, grad))
found = true;
break;
case TENSOR :
// TODO: grad of tensor not allowed yet - not sure how we should return
// the values; provide 3 routines that return 3 tensors, or add argumemt
// to select what to return?
if(data->searchTensor(x, y, z, &val[0], -1, 0, qn, qx, qy, qz, false))
found = true;
break;
}
if(found){
for(int j = 0; j < numComp; j++)
V->Val[j] += val[numComp * TimeStep + j];
if(complex && Current.NbrHar == 2 && data->getNumTimeSteps() > TimeStep + 1)
for(int j = 0; j < numComp; j++)
V->Val[MAX_DIM + j] += val[numComp * (TimeStep + 1) + j];
N += 1.;
}
}
if(N > 1.){
Message::Debug("Averaging data %g times on vertex (%g,%g,%g)", N, x, y, z);
for (int k = 0; k < Current.NbrHar; k++)
for (int j = 0; j < numComp; j++)
V->Val[MAX_DIM * k + j] /= N ;
}
}
#else
void F_Field(F_ARG)
{
Message::Error("You need to compile GetDP with Gmsh support to use 'Field'");
V->Val[0] = 0. ;
V->Type = SCALAR ;
}
static void F_X_Field(F_ARG, int type, bool complex, bool grad=false)
{
Message::Error("You need to compile GetDP with Gmsh support to use 'Field'");
V->Val[0] = 0. ;
V->Type = SCALAR ;
}
#endif
void F_ScalarField(F_ARG){ F_X_Field(Fct, A, V, SCALAR, false); }
void F_VectorField(F_ARG){ F_X_Field(Fct, A, V, VECTOR, false); }
void F_TensorField(F_ARG){ F_X_Field(Fct, A, V, TENSOR, false); }
void F_ComplexScalarField(F_ARG){ F_X_Field(Fct, A, V, SCALAR, true); }
void F_ComplexVectorField(F_ARG){ F_X_Field(Fct, A, V, VECTOR, true); }
void F_ComplexTensorField(F_ARG){ F_X_Field(Fct, A, V, TENSOR, true); }
void F_GradScalarField(F_ARG){ F_X_Field(Fct, A, V, SCALAR, false, true); }
void F_GradVectorField(F_ARG){ F_X_Field(Fct, A, V, VECTOR, false, true); }
void F_GradComplexScalarField(F_ARG){ F_X_Field(Fct, A, V, SCALAR, true, true); }
void F_GradComplexVectorField(F_ARG){ F_X_Field(Fct, A, V, VECTOR, true, true); }
|