File: F_Math.cpp

package info (click to toggle)
getdp 3.0.4%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 10,856 kB
  • sloc: cpp: 63,020; fortran: 13,955; yacc: 9,350; f90: 1,640; lex: 799; makefile: 55; ansic: 34; awk: 33; sh: 23
file content (356 lines) | stat: -rw-r--r-- 11,948 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// GetDP - Copyright (C) 1997-2018 P. Dular and C. Geuzaine, University of Liege
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/getdp/getdp/issues

#include <math.h>
#include <complex>
#include "ProData.h"
#include "F.h"
#include "MallocUtils.h"
#include "Message.h"
#include "Bessel.h"

extern struct CurrentData Current ;

/* ------------------------------------------------------------------------ */
/*  C math functions (scalar, 1 argument, imaginary part set to zero)       */
/* ------------------------------------------------------------------------ */

#define scalar_real_1_arg(func, string)					\
  int     k;								\
									\
  if(A->Type != SCALAR)							\
    Message::Error("Non scalar argument for function '" string "'");	\
  if(Current.NbrHar > 1 && A->Val[MAX_DIM] != 0.)                       \
    Message::Error("Function '" string "' only accepts real arguments");\
  V->Val[0] = func(A->Val[0]) ;						\
  if (Current.NbrHar > 1){						\
    V->Val[MAX_DIM] = 0. ;						\
    for (k = 2 ; k < std::min(NBR_MAX_HARMONIC, Current.NbrHar) ; k += 2) \
      V->Val[MAX_DIM*k] = V->Val[MAX_DIM*(k+1)] = 0. ;			\
  }									\
  V->Type = SCALAR;

void F_Floor (F_ARG) { scalar_real_1_arg (floor,"Floor") }
void F_Ceil  (F_ARG) { scalar_real_1_arg (ceil, "Ceil")  }
void F_Fabs  (F_ARG) { scalar_real_1_arg (fabs, "Fabs")  }
void F_Asin  (F_ARG) { scalar_real_1_arg (asin, "Asin")  }
void F_Acos  (F_ARG) { scalar_real_1_arg (acos, "Acos")  }
void F_Atan  (F_ARG) { scalar_real_1_arg (atan, "Atan")  }
void F_Atanh (F_ARG) { scalar_real_1_arg (atanh, "Atanh")}

#undef scalar_real_1_arg

/* ------------------------------------------------------------------------ */
/*  C math functions (complex scalar, 1 argument)                           */
/* ------------------------------------------------------------------------ */

#define scalar_cmplx_1_arg(func, string)                                \
  int                  k;                                               \
  std::complex<double> tmp;                                             \
                                                                        \
  if(A->Type != SCALAR)                                                 \
    Message::Error("Non scalar argument for function '" string "'");    \
                                                                        \
  switch(Current.NbrHar){                                               \
  case 1:                                                               \
    V->Val[0]       = func(A->Val[0]) ;                                 \
    V->Val[MAX_DIM] = 0. ;                                              \
    break ;                                                             \
  case 2:                                                               \
    tmp = std::complex<double>(A->Val[0], A->Val[MAX_DIM]);             \
    tmp = func(tmp);                                                    \
    V->Val[0]       = std::real(tmp);                                   \
    V->Val[MAX_DIM] = std::imag(tmp);                                   \
    break;                                                              \
  default:                                                              \
    V->Val[MAX_DIM] = 0. ;                                              \
    for (k = 2 ; k < std::min(NBR_MAX_HARMONIC, Current.NbrHar) ; k += 2) \
      V->Val[MAX_DIM*k] = V->Val[MAX_DIM*(k+1)] = 0. ;                  \
  }                                                                     \
  V->Type = SCALAR;                                                     \

void F_Exp   (F_ARG) { scalar_cmplx_1_arg (exp,  "Exp")   }
void F_Log   (F_ARG) { scalar_cmplx_1_arg (log,  "Log")   }
void F_Log10 (F_ARG) { scalar_cmplx_1_arg (log10,"Log10") }
void F_Sqrt  (F_ARG) { scalar_cmplx_1_arg (sqrt, "Sqrt")  }
void F_Sin   (F_ARG) { scalar_cmplx_1_arg (sin,  "Sin")   }
void F_Cos   (F_ARG) { scalar_cmplx_1_arg (cos,  "Cos" )  }
void F_Tan   (F_ARG) { scalar_cmplx_1_arg (tan,  "Tan")   }
void F_Sinh  (F_ARG) { scalar_cmplx_1_arg (sinh, "Sinh")  }
void F_Cosh  (F_ARG) { scalar_cmplx_1_arg (cosh, "Cosh")  }
void F_Tanh  (F_ARG) { scalar_cmplx_1_arg (tanh, "Tanh")  }
void F_Abs   (F_ARG) { scalar_cmplx_1_arg (std::abs, "Abs")  }

#undef scalar_cmplx_1_arg

/* ------------------------------------------------------------------------ */
/*  C math functions (scalar, 2 arguments, imaginary part set to zero)      */
/* ------------------------------------------------------------------------ */

#define scalar_real_2_arg(func, string)					\
  int     k;								\
									\
  if(A->Type != SCALAR || (A+1)->Type != SCALAR)			\
    Message::Error("Non scalar argument(s) for function '" string "'");	\
  if(Current.NbrHar > 1 && (A->Val[MAX_DIM] != 0. ||                    \
                            (A+1)->Val[MAX_DIM] != 0.))                 \
    Message::Error("Function '" string "' only accepts real arguments");\
									\
  V->Val[0] = func(A->Val[0], (A+1)->Val[0]) ;				\
  if (Current.NbrHar > 1){						\
    V->Val[MAX_DIM] = 0. ;						\
    for (k = 2 ; k < std::min(NBR_MAX_HARMONIC, Current.NbrHar) ; k += 2) \
      V->Val[MAX_DIM*k] = V->Val[MAX_DIM*(k+1)] = 0. ;			\
  }									\
  V->Type = SCALAR;

void F_Atan2 (F_ARG) { scalar_real_2_arg (atan2, "Atan2")   }
void F_Fmod  (F_ARG) { scalar_real_2_arg (fmod, "Fmod")     }

#undef scalar_real_2_arg

/* ------------------------------------------------------------------------ */
/*  Sign function                                                           */
/* ------------------------------------------------------------------------ */

void F_Sign(F_ARG)
{
  int     k;
  double  x;

  if(A->Type != SCALAR)
    Message::Error("Non scalar argument for function 'Sign'");
  x = A->Val[0];

  if(x >= 0.)
    V->Val[0] = 1.;
  else if(x < 0.)
    V->Val[0] = -1.;
  else
    V->Val[0] = 0.;

  if (Current.NbrHar > 1){
    V->Val[MAX_DIM] = 0. ;
    for (k = 2 ; k < std::min(NBR_MAX_HARMONIC, Current.NbrHar) ; k += 2)
      V->Val[MAX_DIM*k] = V->Val[MAX_DIM*(k+1)] = 0. ;
  }
  V->Type = SCALAR;
}

/* ------------------------------------------------------------------------ */
/*  Min, Max                                                                */
/* ------------------------------------------------------------------------ */

void F_Min(F_ARG)
{
  int     k;

  if(A->Type != SCALAR || (A+1)->Type != SCALAR)
    Message::Error("Non scalar argument(s) for function Min");

  V->Val[0] = (A->Val[0] < (A+1)->Val[0]) ? A->Val[0] : (A+1)->Val[0];
  if (Current.NbrHar > 1){
    V->Val[MAX_DIM] = 0. ;
    for (k = 2 ; k < std::min(NBR_MAX_HARMONIC, Current.NbrHar) ; k += 2)
      V->Val[MAX_DIM*k] = V->Val[MAX_DIM*(k+1)] = 0. ;
  }
  V->Type = SCALAR;
}

void F_Max(F_ARG)
{
  int     k;

  if(A->Type != SCALAR || (A+1)->Type != SCALAR)
    Message::Error("Non scalar argument(s) for function Max");

  V->Val[0] = (A->Val[0] > (A+1)->Val[0]) ? A->Val[0] : (A+1)->Val[0];
  if (Current.NbrHar > 1){
    V->Val[MAX_DIM] = 0. ;
    for (k = 2 ; k < std::min(NBR_MAX_HARMONIC, Current.NbrHar) ; k += 2)
      V->Val[MAX_DIM*k] = V->Val[MAX_DIM*(k+1)] = 0. ;
  }
  V->Type = SCALAR;
}

/* ------------------------------------------------------------------------ */
/*  Bessel functions jn, yn and their derivatives                           */
/* ------------------------------------------------------------------------ */

void F_Jn(F_ARG)
{
  int     k, n;
  double  x;

  if(A->Type != SCALAR || (A+1)->Type != SCALAR)
    Message::Error("Non scalar argument(s) for Bessel function of the first kind 'Jn'");
  n = (int)A->Val[0];
  x = (A+1)->Val[0];

  V->Val[0] = jn(n, x);

  if (Current.NbrHar > 1){
    V->Val[MAX_DIM] = 0. ;
    for (k = 2 ; k < std::min(NBR_MAX_HARMONIC, Current.NbrHar) ; k += 2)
      V->Val[MAX_DIM*k] = V->Val[MAX_DIM*(k+1)] = 0. ;
  }
  V->Type = SCALAR;
}

void F_JnComplex(F_ARG)
{
  if(A->Type != SCALAR || (A+1)->Type != SCALAR)
    Message::Error("Non scalar argument(s) for Bessel function of the first kind 'JnComplex'");
  int n = (int)A->Val[0];
  double xr = (A+1)->Val[0];
  double xi = (A+1)->Val[MAX_DIM];
  double valr, vali;

  BesselJnComplex(n, 1, xr, xi, &valr, &vali);

  V->Val[0] = valr;
  V->Val[MAX_DIM] = vali;

  if (Current.NbrHar > 1){
    for (int k = 2 ; k < std::min(NBR_MAX_HARMONIC, Current.NbrHar) ; k += 2)
      V->Val[MAX_DIM*k] = V->Val[MAX_DIM*(k+1)] = 0. ;
  }
  V->Type = SCALAR;
}

void F_Yn(F_ARG)
{
  int     k, n;
  double  x;

  if(A->Type != SCALAR || (A+1)->Type != SCALAR)
    Message::Error("Non scalar argument(s) for Bessel function of the second 'Yn'");
  n = (int)A->Val[0];
  x = (A+1)->Val[0];

  V->Val[0] = yn(n, x);

  if (Current.NbrHar > 1){
    V->Val[MAX_DIM] = 0. ;
    for (k = 2 ; k < std::min(NBR_MAX_HARMONIC, Current.NbrHar) ; k += 2)
      V->Val[MAX_DIM*k] = V->Val[MAX_DIM*(k+1)] = 0. ;
  }
  V->Type = SCALAR;
}

double dBessel(double *tab, int n, double x)
{
  if(n == 0){
    return - tab[1];
  }
  else{
    return tab[n-1] - (double)n/x * tab[n];
  }
}

void F_dJn(F_ARG)
{

  int     k, n;
  double  x, *jntab;

  if(A->Type != SCALAR || (A+1)->Type != SCALAR)
    Message::Error("Non scalar argument(s) for the derivative of the Bessel "
                   "function of the first kind 'dJn'");
  n = (int)A->Val[0];
  x = (A+1)->Val[0];

  jntab = (double*)Malloc((n + 2) * sizeof(double));
  for(k = 0; k < n + 2; k++){
    jntab[k] = jn(k, x);
  }
  V->Val[0] = dBessel(jntab, n, x);
  Free(jntab);

  if (Current.NbrHar > 1){
    V->Val[MAX_DIM] = 0. ;
    for (k = 2 ; k < std::min(NBR_MAX_HARMONIC, Current.NbrHar) ; k += 2)
      V->Val[MAX_DIM*k] = V->Val[MAX_DIM*(k+1)] = 0. ;
  }
  V->Type = SCALAR;
}

void F_dYn(F_ARG)
{
  int     k, n;
  double  x, *yntab;

  if(A->Type != SCALAR || (A+1)->Type != SCALAR)
    Message::Error("Non scalar argument(s) for the derivative of the Bessel "
                   "function of the second kind 'dYn'");
  n = (int)A->Val[0];
  x = (A+1)->Val[0];

  yntab = (double*)Malloc((n + 2) * sizeof(double));
  for(k = 0; k < n + 2; k++){
    yntab[k] = yn(k, x);
  }
  V->Val[0] = dBessel(yntab, n, x);
  Free(yntab);

  if (Current.NbrHar > 1){
    V->Val[MAX_DIM] = 0. ;
    for (k = 2 ; k < std::min(NBR_MAX_HARMONIC, Current.NbrHar) ; k += 2)
      V->Val[MAX_DIM*k] = V->Val[MAX_DIM*(k+1)] = 0. ;
  }
  V->Type = SCALAR;
}

/* ------------------------------------------------------------------------ */
/*  Spherical Bessel functions jn, yn and their derivatives                 */
/* ------------------------------------------------------------------------ */

void F_JnSph(F_ARG)
{
  if(A->Type != SCALAR || (A+1)->Type != SCALAR)
    Message::Error("Non scalar argument(s) for function 'JnSph' (spherical Bessel function)");

  int n = (int)A->Val[0];
  double x = (A+1)->Val[0];

  V->Type = SCALAR;
  V->Val[0] = Spherical_j_n(n, x);
}

void F_YnSph(F_ARG)
{
  if(A->Type != SCALAR || (A+1)->Type != SCALAR)
    Message::Error("Non scalar argument(s) for function 'YnSph' (spherical Bessel function)");

  int n = (int)A->Val[0];
  double x = (A+1)->Val[0];

  V->Type = SCALAR;
  V->Val[0] = Spherical_y_n(n, x);
}

void F_dJnSph(F_ARG)
{
  if(A->Type != SCALAR || (A+1)->Type != SCALAR)
    Message::Error("Non scalar argument(s) for function 'dJnSph' (derivative of spherical Bessel function)");

  int n = (int)A->Val[0];
  double x = (A+1)->Val[0];

  V->Type = SCALAR;
  V->Val[0] = (n/x) * Spherical_j_n(n, x) - Spherical_j_n(n+1, x);
}

void F_dYnSph(F_ARG)
{
  if(A->Type != SCALAR || (A+1)->Type != SCALAR)
    Message::Error("Non scalar argument(s) for function 'dYnSph' (derivative of spherical Bessel function)");

  int n = (int)A->Val[0];
  double x = (A+1)->Val[0];

  V->Type = SCALAR;
  V->Val[0] = (n/x) * Spherical_y_n(n, x) - Spherical_y_n(n+1, x);
}