1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
|
// GetDP - Copyright (C) 1997-2018 P. Dular and C. Geuzaine, University of Liege
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/getdp/getdp/issues
//
// Contributed by Bertrand Thierry
#include <stdio.h>
#include <stdlib.h>
#include "GetDPConfig.h"
#include "ProData.h"
#include "SolvingOperations.h"
#include "Message.h"
#include "OS.h"
extern struct CurrentData Current ;
// for performance tests
//#define TIMER
#if defined(HAVE_PETSC) && defined(HAVE_GMSH)
#include "petscksp.h"
#include <gmsh/GmshGlobal.h>
#include <gmsh/PView.h>
#include <gmsh/PViewData.h>
#if ((PETSC_VERSION_RELEASE == 0) || ((PETSC_VERSION_MAJOR == 3) && (PETSC_VERSION_MINOR >= 7)))
#define PetscViewerSetFormat(A, B) PetscViewerPushFormat(A, B)
#endif
static void _try(int ierr)
{
CHKERRCONTINUE(ierr);
if(PetscUnlikely(ierr)){
const char *text;
PetscErrorMessage(ierr, &text, 0);
Message::Error("PETSc error: %s", text);
Message::SetLastPETScError(ierr);
}
}
class ILS{
// A new communicator can be created. If some processes have no work they must
// be excluded from the communicator to avoir dead-lock
private:
// current cpu number and total number of cpus
static MPI_Comm _comm;
static int _commRank, _commSize;
public:
static int GetCommRank(){ return _commRank; }
static int GetCommSize(){ return _commSize; }
static MPI_Comm GetComm(){ return _comm; }
};
MPI_Comm ILS::_comm = MPI_COMM_WORLD;
int ILS::_commRank = 0;
int ILS::_commSize = 1;
class ILSField{
public:
// number of Fields in this class
PetscInt nb_field;
// total number of elements of all fields in this class
PetscInt n_elem;
// GmshTag[j] = tag of field j (in getdp/gmsh, ie : outside IterativeLinearSolver)
std::vector<PetscInt> GmshTag;
// ILSTag[j] = local tag of field j in the function IterativeLinearSolver
// (usefull for MyField).
std::vector<PetscInt> ILSTag;
// rank[j] is the mpi_rank of the process that owns field j
std::vector<PetscInt> rank;
// size[j] = nb of elements in the field j
std::vector<PetscInt> size;
// starting index in the Petsc Vec containing all the fields
std::vector<PetscInt> iStart;
// same as iStart but ending (a priori useless)
std::vector<PetscInt> iEnd;
// variables for transfering data with neighbors
static bool areNeighbor;
// number of field that this process must receive
int nb_field_to_receive;
std::vector<std::vector<PetscInt> > myN;
// sizes of vectors of PView that this process is in charge
std::vector<std::vector<PetscInt> > mySizeV;
std::vector<std::vector<PetscInt> > theirN;
std::vector<std::vector<PetscInt> > theirSizeV;
// GmshTag of the fields that must be received by the current MPI processe
// (concatenation of myNeighbor)
std::vector<PetscInt> FieldToReceive;
// RankToSend[j] returns the rank to which the j^th local field must be sent
std::vector<std::vector<PetscInt> > RankToSend;
// CPU Time
std::vector<double> TimeBcast, TimeIt, TimeTreatment;
// The below function is useful to do a reverse search: Given the GmshTag of a
// field (GetDP/GMSH) it returns its local tag in IterativeLinearSolver
// (ILSTag) Indeed, ILS can renumber the field in another way than gmsh/getdp
int GetILSTagFromGmshTag(int gTag)
{
for (int j = 0; j < nb_field ; j++)
if(GmshTag[j] == gTag) return ILSTag[j];
return -1; //error
}
int GetRankFromGmshTag(int gTag)
{
for (int j = 0; j < nb_field ; j++)
if(GmshTag[j] == gTag) return rank[j];
return -1; //error
}
int GetRankFromILSTag(int ilsTag)
{
for (int j = 0; j < nb_field ; j++)
if(ILSTag[j] == ilsTag) return rank[j];
return -1; //error
}
int GetGmshTagFromRank(int irank)
{
for (int j = 0; j < nb_field ; j++)
if(rank[j] == irank) return GmshTag[j];
return -1; //error
}
};
bool ILSField::areNeighbor = false;
// pointers to MyField and AllField, valid while Operation_LinearIterativeSolver
// is running; This is used by Operation_BroadcastFields to explicitely
// braodcast the fields in the middle of an ILSMatVec call.
static ILSField *MyStaticField = 0, *AllStaticField = 0;
// Matrix Free structure (Matrix Shell)
typedef struct{
char *LinearSystemType;
ILSField *MyField;
ILSField *AllField;
struct Resolution *Resolution_P;
struct Operation *Operation_P;
struct DofData *DofData_P0;
struct GeoData *GeoData_P0;
} ILSMat;
static PView *GetViewByTag(int tag)
{
PView *view = PView::getViewByTag(tag);
if(!view) Message::Error("View %d does not exist");
return view;
}
static PetscErrorCode InitData(ILSField *MyField, ILSField *AllField,
struct Operation *Operation_P,
std::vector<std::vector<std::vector<double> > > *B_std)
{
int mpi_comm_size = Message::GetCommSize();
int mpi_comm_rank = Message::GetCommRank();
std::vector<PetscInt> tab_nb_field_loc;
std::vector<PetscInt> displs(mpi_comm_size);
int counter = 0;
// number of fields owned by me and the other tasks
MyField->nb_field = List_Nbr(Operation_P->Case.IterativeLinearSolver.MyFieldTag);
tab_nb_field_loc.resize(mpi_comm_size);
MPI_Allgather(&MyField->nb_field, 1, MPI_INT, &tab_nb_field_loc[0],
1, MPI_INT, PETSC_COMM_WORLD);
AllField->nb_field = 0;
for (int irank = 0 ; irank < mpi_comm_size ; irank ++)
AllField->nb_field += tab_nb_field_loc[irank];
// displacement vector (for MPI_AllGatherV)
displs[0] = 0;
for (int irank = 1 ; irank < mpi_comm_size ; irank ++)
displs[irank] = tab_nb_field_loc[irank-1] + displs[irank-1];
// Tag of the fields owned by me ....
MyField->GmshTag.resize(MyField->nb_field);
MyField->ILSTag.resize(MyField->nb_field);
MyField->rank.resize(MyField->nb_field);
for(int iField = 0; iField < MyField->nb_field; iField++) {
double d;
List_Read(Operation_P->Case.IterativeLinearSolver.MyFieldTag, iField, &d);
MyField->GmshTag[iField] = (int)d;
MyField->rank[iField] = mpi_comm_rank;
MyField->ILSTag[iField] = displs[mpi_comm_rank] + iField;
}
// ...and by the other tasks
AllField->GmshTag.resize(AllField->nb_field);
AllField->rank.resize(AllField->nb_field);
AllField->ILSTag.resize(AllField->nb_field);
for (int iField = 0; iField < AllField->nb_field ; iField ++)
AllField->ILSTag[iField] = iField;
MPI_Allgatherv(&MyField->GmshTag[0], MyField->nb_field, MPI_INT,
&AllField->GmshTag[0], &tab_nb_field_loc[0], &displs[0], MPI_INT,
PETSC_COMM_WORLD);
MPI_Allgatherv(&MyField->rank[0], MyField->nb_field, MPI_INT,
&AllField->rank[0], &tab_nb_field_loc[0], &displs[0], MPI_INT,
PETSC_COMM_WORLD);
// Now the (local) fields in RAM must be read
(*B_std).resize(MyField->nb_field);
MyField->n_elem = 0;
MyField->size.resize(MyField->nb_field);
for(int iField = 0; iField < MyField->nb_field; iField ++) {
(*B_std)[iField].resize(2);
int d;
PView *view = GetViewByTag(MyField->GmshTag[iField]);
view->getData()->toVector((*B_std)[iField]);
d = (*B_std)[iField][0].size();
MyField->size[iField] = d;
MyField->n_elem += d;
}
// Share information on the size of the local fields with other tasks
MPI_Allreduce(&MyField->n_elem, &AllField->n_elem, 1, MPI_INT,
MPI_SUM, PETSC_COMM_WORLD);
AllField->size.resize(AllField->nb_field);
MPI_Allgatherv(&MyField->size[0], MyField->nb_field, MPI_INT,
&AllField->size[0], &tab_nb_field_loc[0], &displs[0], MPI_INT,
PETSC_COMM_WORLD);
// Compute the starting/ending index in the futur Petsc Vec containing all the Gmsh fields
AllField->iStart.resize(AllField->nb_field);
AllField->iEnd.resize(AllField->nb_field);
MyField->iStart.resize(MyField->nb_field);
MyField->iEnd.resize(MyField->nb_field);
AllField->iStart[0] = 0;
counter = 0;
for(int j = 0; j < AllField->nb_field; j++){
if(j > 0)
AllField->iStart[j] = AllField->iEnd[j-1] + 1;
AllField->iEnd[j] = AllField->iStart[j] + AllField->size[j] - 1;
// Store in MyField if I am in charge of the Field
if(AllField->rank[j] == mpi_comm_rank){
MyField->iStart[counter] = AllField->iStart[j];
MyField->iEnd[counter] = AllField->iEnd[j];
counter++;
}
}
// Who are my Neighbors for the Broadcast ? At the time of writing, GetDP does
// not manage 2D Lists. Thus, to act as-if, the list of neighbors is composed
// as follows:
// NeighborFieldTag = {n_0, ... n_0 GmshTag ... , n_1, ... n_1 GmshTag, ...}
// For example, if
// MyFieldTag = {0, 3}
// NeighborFieldTag = {2, 5, 1, 3, 2, 4, 6}
// This mean that current process is in charge of Field with GmshTag 0 and 7.
// Field of GmshTag 0 has 2 neighbors : fields of GmshTag 5 and 1
// Field of GmshTag 7 has 3 neighbors : fields of GmshTag 2, 4 and 6
// (if GetDP changes and accepts lists of lists, then this trick should be useless
// and changed !)
int nNeighbor_aux = 0;
nNeighbor_aux = List_Nbr(Operation_P->Case.IterativeLinearSolver.NeighborFieldTag);
// make every process agreed on whether there is neighbor or not
if(mpi_comm_size < 2){
ILSField::areNeighbor = false;
}
else{
//suppose it's true
ILSField::areNeighbor = true;
//share info on neighbor
int bool_neigh = (nNeighbor_aux > 0);
std::vector<int> tab_bool_neigh(mpi_comm_size);
MPI_Allgather(&bool_neigh, 1, MPI_INT, &tab_bool_neigh[0], 1,
MPI_INT, MPI_COMM_WORLD);
for(int irank = 0; irank < mpi_comm_size ; irank ++)
if(tab_bool_neigh[irank] == 0 && AllField->GetGmshTagFromRank(irank) >= 0)
// if one process has no neighbord AND is charge of some fields (=is a worker)
ILSField::areNeighbor = false;
}
if(ILSField::areNeighbor){
int cpt_neigh = 0; // counter in list IterativeLinearSolver.NeighborFieldTag
// for every field, RankToSend contain the rank of the process in need of
// the field
MyField->RankToSend.resize(MyField->nb_field);
int cpt_send = 0;
// over-sizing FieldToReceive, which contains the field that are needed by
// this mpi process
MyField->FieldToReceive.resize(AllField->nb_field - MyField->nb_field);
int cpt_recv = 0;
// read through every neighbors
for(int ifield = 0 ; ifield < MyField->nb_field ; ifield++){
double d;
List_Read(Operation_P->Case.IterativeLinearSolver.NeighborFieldTag,
cpt_neigh, &d);
int n_neigh = (int)d;
cpt_send = 0;
//at maximum n_neigh process to send this view
MyField->RankToSend[ifield].resize(n_neigh);
for(int j = 0; j < n_neigh ; j++){
//counter in list NeighborFieldTag
cpt_neigh ++;
List_Read(Operation_P->Case.IterativeLinearSolver.NeighborFieldTag,
cpt_neigh, &d);
int GmshTag_newneigh = (int)d;
// Check if not already stored (either because this process is in charge
// of the field or due to a doublon)
bool isStored = false;
for(int i = 0; i < MyField->nb_field ; i++){
if(GmshTag_newneigh == MyField->GmshTag[i]){
isStored = true;
break;
}
}
for(int i = 0; i < cpt_recv ; i++){
if(GmshTag_newneigh == MyField->FieldToReceive[i]){
isStored = true;
break;
}
}
// in case it's not already store
if(!isStored){
MyField->FieldToReceive[cpt_recv] = GmshTag_newneigh;
cpt_recv++;
}
// check if stored in the table of Mpi processes which will receive this field
isStored = false;
int rank_new_neigh =
AllField->rank[AllField->GetILSTagFromGmshTag(GmshTag_newneigh)];
MyField->RankToSend[ifield].resize(n_neigh);
// Maybe this process is in charge of this field..
if(rank_new_neigh == mpi_comm_rank)
isStored = true;
else{ //...or maybe it is already stored ...
for(int i = 0; i < cpt_send ; i++){
if(rank_new_neigh == MyField->RankToSend[ifield][i]){
isStored = true;
break; }
}
}
if(!isStored){ // not already stored
MyField->RankToSend[ifield][cpt_send] = rank_new_neigh;
cpt_send++;
}
}
// resize
MyField->RankToSend[ifield].resize(cpt_send);
cpt_neigh++;
}
// resize
MyField->FieldToReceive.resize(cpt_recv);
MyField->nb_field_to_receive = cpt_recv;
// Check and exchange information on the size of the PView
// Exchange information on the size of the PView (Field) with the neighbors
MyField->myN.resize(MyField->nb_field);
MyField->mySizeV.resize(MyField->nb_field);
std::vector< MPI_Request > tab_request(0);
for (int mfield = 0 ; mfield < MyField->nb_field ; mfield ++){
// Measure the size of the vectors of Field of local number mfield
std::vector< std::vector<double>* > V(24);
MyField->myN[mfield].resize(24);
MyField->mySizeV[mfield].resize(24);
int GmshTag = MyField->GmshTag[mfield];
PView *view = GetViewByTag(GmshTag);
view->getData()->getListPointers(&(MyField->myN[mfield][0]), &V[0]);
for(int j = 0 ; j < 24 ; j++)
MyField->mySizeV[mfield][j] = (*(V[j])).size();
// Exchange information about the sizes (mySizeV and myN)
int n_proc_to_send = MyField->RankToSend[mfield].size();
for(int j = 0 ; j < n_proc_to_send ; j++){
MPI_Request sendN, sendSizeV;
int tagN = 10*GmshTag + 1;
int tagSizeV = 10*GmshTag + 2;
// send vector myN and mysizeV
MPI_Isend(&(MyField->myN[mfield][0]), 24, MPI_INT,
MyField->RankToSend[mfield][j], tagN, MPI_COMM_WORLD, &sendN);
MPI_Isend(&(MyField->mySizeV[mfield][0]), 24, MPI_INT,
MyField->RankToSend[mfield][j], tagSizeV, MPI_COMM_WORLD, &sendSizeV);
tab_request.push_back(sendN);
tab_request.push_back(sendSizeV);
}
}
// Receive information from the other process
MyField->theirN.resize(MyField->nb_field_to_receive);
MyField->theirSizeV.resize(MyField->nb_field_to_receive);
for (int ifield = 0 ; ifield < MyField->nb_field_to_receive ; ifield ++){
MPI_Request recvN, recvSizeV;
// receive information on vectors N and sizeV from the other
int fieldGmshTag = MyField->FieldToReceive[ifield];
int fieldILSTag = AllField->GetILSTagFromGmshTag(fieldGmshTag);
int rank_emiter = AllField->rank[fieldILSTag];
int tagN = 10*fieldGmshTag + 1;
int tagSizeV = 10*fieldGmshTag + 2;
// resize before receiving
MyField->theirN[ifield].resize(24);
MyField->theirSizeV[ifield].resize(24);
// Receive
MPI_Irecv(&(MyField->theirN[ifield][0]), 24, MPI_INT, rank_emiter, tagN,
MPI_COMM_WORLD, &recvN);
MPI_Irecv(&(MyField->theirSizeV[ifield][0]), 24, MPI_INT, rank_emiter, tagSizeV,
MPI_COMM_WORLD, &recvSizeV);
tab_request.push_back(recvN);
tab_request.push_back(recvSizeV);
}
// check if reception is ok
std::vector< MPI_Status > tab_status;
MPI_Waitall(tab_request.size(), &tab_request[0], &tab_status[0]);
}
// keep track of fields for external use
MyStaticField = MyField;
AllStaticField = AllField;
PetscFunctionReturn(0);
}
// Communicate PViews
static PetscErrorCode PViewBCast(ILSField MyField, ILSField AllField,
const std::set<int> &fieldsToSkip=std::set<int>())
{
if(Message::GetCommSize() == 1) // serial: all views are available to everyone
PetscFunctionReturn(0);
if(!(ILSField::areNeighbor)){
// broadcast all views
for (int iField = 0 ; iField < AllField.nb_field ; iField++){
int GmshTag = AllField.GmshTag[iField];
int fieldRank = AllField.rank[iField];
std::vector< std::vector<double>* > V(24);
std::vector<int> sizeV(24);
std::vector<int> N(24);
int masterRank = fieldRank;
MPI_Comm fieldcomm = MPI_COMM_WORLD;
int mpi_fieldcomm_rank = Message::GetCommRank();
if(mpi_fieldcomm_rank == fieldRank){
PView *view = GetViewByTag(GmshTag);
view->getData()->getListPointers(&N[0], &V[0]);
for(int j = 0 ; j < 24 ; j++)
sizeV[j] = (*(V[j])).size();
}
// Transfer PView
MPI_Bcast(&N[0], 24, MPI_INT, masterRank, fieldcomm);
MPI_Bcast(&sizeV[0], 24, MPI_INT, masterRank, fieldcomm);
for(int j = 0; j < 24 ; j ++){
if(mpi_fieldcomm_rank != masterRank){
V[j] = new std::vector<double>;
(*(V[j])).resize(sizeV[j]);
}
if(sizeV[j] > 0) //avoid useless BCast
MPI_Bcast(&(*(V[j]))[0], sizeV[j], MPI_DOUBLE, masterRank, fieldcomm);
}
// All other tasks of the communicator create/update the views
if(mpi_fieldcomm_rank != masterRank){
PView *view = new PView(GmshTag);
view->getData()->importLists(&N[0], &V[0]);
for(int j = 0 ; j < 24 ; j++)
delete V[j] ;
}
}
}
else{
// With a specification on the neighbors, asynchronous Send/Recv (only with
// the neighbors)
std::vector< MPI_Request > tab_request(0);
// send my PView to my neighbors
for (int ifield = 0 ; ifield < MyField.nb_field ; ifield ++){
int GmshTag = MyField.GmshTag[ifield];
// don't send field if explicitely asked to skip it
if(fieldsToSkip.find(GmshTag) != fieldsToSkip.end()) continue;
PView *view = GetViewByTag(GmshTag);
std::vector< std::vector<double>* > V_send(24);
std::vector<int> N(24);
view->getData()->getListPointers(&N[0], &V_send[0]);
for (int j = 0 ; j < 24 ; j ++){
int tag = 100 * GmshTag + j;
int n_data = MyField.mySizeV[ifield][j];
if(n_data > 0){
//Loop on the receiver
for (unsigned int ineigh = 0 ; ineigh < MyField.RankToSend[ifield].size() ;
ineigh ++){
MPI_Request sendV;
int receiver = MyField.RankToSend[ifield][ineigh];
MPI_Isend(&(*(V_send[j]))[0], n_data, MPI_DOUBLE, receiver, tag,
MPI_COMM_WORLD, &sendV);
tab_request.push_back(sendV);
Message::Debug("Rank %d has sent %d", Message::GetCommRank(), GmshTag);
}
}
}
}
//receive all the PView I need
std::vector< std::vector< std::vector<double>* > > V_recv(MyField.nb_field_to_receive);
for (int ifield = 0 ; ifield < MyField.nb_field_to_receive ; ifield ++){
int GmshTag = MyField.FieldToReceive[ifield];
// don't receive field if explicitely asked to skip it
if(fieldsToSkip.find(GmshTag) != fieldsToSkip.end()) continue;
int sender = AllField.GetRankFromGmshTag(GmshTag);
V_recv[ifield].resize(24);
std::vector<int> N(24);
// allocate memory
for (int j = 0 ; j < 24 ; j ++){
V_recv[ifield][j] = new std::vector<double>;
(*(V_recv[ifield][j])).resize(MyField.theirSizeV[ifield][j]);
}
for (int j = 0 ; j < 24 ; j ++){
int n_data = MyField.theirSizeV[ifield][j];
if(n_data > 0){
MPI_Request recvV;
int tag = 100*GmshTag + j;
MPI_Irecv(&(*(V_recv[ifield][j]))[0], n_data, MPI_DOUBLE, sender, tag,
MPI_COMM_WORLD, &recvV);
tab_request.push_back(recvV);
Message::Debug("Rank %d has received %d", Message::GetCommRank(), GmshTag);
}
}
}
// check if reception is ok
std::vector< MPI_Status > tab_status(tab_request.size());
MPI_Waitall(tab_request.size(), &tab_request[0], &tab_status[0]);
for (int ifield = 0 ; ifield < MyField.nb_field_to_receive ; ifield ++){
int GmshTag = MyField.FieldToReceive[ifield];
if(fieldsToSkip.find(GmshTag) != fieldsToSkip.end()) continue;
PView *view = new PView(GmshTag);
view->getData()->importLists(&MyField.theirN[ifield][0], &V_recv[ifield][0]);
for (int j = 0 ; j < 24 ; j ++){
delete V_recv[ifield][j];
}
}
}
PetscFunctionReturn(0);
}
// Copy a STD Vector (std_vec) to a PETSc VEc (petsc_vec)
// In fact, copy the local part only of the PETSc Vec
static PetscErrorCode STD_vector_to_PETSc_Vec
(std::vector<std::vector<std::vector<double> > > std_vec,
Vec petsc_vec, ILSField *Local)
{
PetscInt nb_view = Local->nb_field;
for (int cpt_view = 0; cpt_view < nb_view; cpt_view++){
int nb_element = Local->size[cpt_view];
std::vector<PetscScalar> val;
std::vector<PetscInt> ix;
if(Current.NbrHar == 2){
#if defined(PETSC_USE_COMPLEX)
val.resize(nb_element);
ix.resize(nb_element);
#else
val.resize(2*nb_element);
ix.resize(2*nb_element);
#endif
}
else{
val.resize(nb_element);
ix.resize(nb_element);
}
for (int i = 0 ; i < nb_element ; i++){
if(Current.NbrHar == 2){
#if defined(PETSC_USE_COMPLEX)
ix[i] = Local->iStart[cpt_view] + i;
val[i] = std_vec[cpt_view][0][i] + PETSC_i*std_vec[cpt_view][1][i];
#else
ix[2*i] = 2*Local->iStart[cpt_view] + 2*i;
ix[2*i+1] = 2*Local->iStart[cpt_view] + 2*i+1;
val[2*i] = std_vec[cpt_view][0][i];
val[2*i+1] = std_vec[cpt_view][1][i];
#endif
}
else{
ix[i] = Local->iStart[cpt_view] + i;
val[i] = std_vec[cpt_view][0][i];
}
}
if(Current.NbrHar == 2){
#if defined(PETSC_USE_COMPLEX)
_try(VecSetValues(petsc_vec, nb_element, &ix[0], &val[0], INSERT_VALUES));
#else
_try(VecSetValues(petsc_vec, 2*nb_element, &ix[0], &val[0], INSERT_VALUES));
#endif
}
else{
_try(VecSetValues(petsc_vec, nb_element, &ix[0], &val[0], INSERT_VALUES));
}
}
_try(VecAssemblyBegin(petsc_vec));
_try(VecAssemblyEnd(petsc_vec));
PetscBarrier((PetscObject)petsc_vec);
PetscFunctionReturn(0);
}
// Copy Petsc Vec to a std::vector
// Send ONLY THE LOCAL Part of the PETSC VEC !
static PetscErrorCode PETSc_Vec_to_STD_Vec
(Vec petsc_vec, ILSField *Local,
std::vector<std::vector<std::vector<double> > > *std_vec)
{
PetscScalar val;
int nb_view = Local->nb_field;
// initializing std_vec
(*std_vec).resize(Local->nb_field);
for (int cpt_view = 0 ; cpt_view < nb_view ; cpt_view++){
int nb_elem = Local->size[cpt_view];
if(Current.NbrHar == 2){
(*std_vec)[cpt_view].resize(2);
(*std_vec)[cpt_view][0].resize(nb_elem);
(*std_vec)[cpt_view][1].resize(nb_elem);
}
else{
(*std_vec)[cpt_view].resize(1);
(*std_vec)[cpt_view][0].resize(nb_elem);
}
}
for (int cpt_view = 0 ; cpt_view < nb_view ; cpt_view++){
int nb_element = Local->size[cpt_view];
int iStart = Local->iStart[cpt_view];
for (int j = 0 ; j < nb_element ; j++) {
int cpt = iStart + j;
if(Current.NbrHar == 2){
#if defined(PETSC_USE_COMPLEX)
_try(VecGetValues(petsc_vec, 1, &cpt, &val));
(*std_vec)[cpt_view][0][j] = (double)PetscRealPart(val);
(*std_vec)[cpt_view][1][j] = (double)PetscImaginaryPart(val);
#else
int cpt2 = 2*iStart + 2*j;
_try(VecGetValues(petsc_vec, 1, &cpt2, &val));
(*std_vec)[cpt_view][0][j] = (double)(val);
int cpt3 = 2*iStart + 2*j+1;
_try(VecGetValues(petsc_vec, 1, &cpt3, &val));
(*std_vec)[cpt_view][1][j] = (double)(val);
#endif
}
else{
_try(VecGetValues(petsc_vec, 1, &cpt, &val));
(*std_vec)[cpt_view][0][j] = (double)PetscRealPart(val);
}
}
}
PetscFunctionReturn(0);
}
// Initialize the MatShell Matrix
// Preallocate the memory
static PetscErrorCode CreateILSMat(ILSMat **shell)
{
ILSMat *newctx;
std::vector<PetscInt> vec_indice, vec_size;
newctx = (ILSMat*)malloc(sizeof(ILSMat));
newctx->MyField = NULL;
newctx->AllField = NULL;
newctx->LinearSystemType = NULL;
newctx->Resolution_P = NULL;
newctx->Operation_P = NULL;
newctx->DofData_P0 = NULL;
newctx->GeoData_P0 = NULL;
*shell = newctx;
PetscFunctionReturn(0);
}
// Set data to the shell matrix contex
static PetscErrorCode SetILSMat(ILSMat **shell, char *LinearSystemType,
ILSField *MyField, ILSField *AllField,
struct Resolution *Resolution_P,
struct Operation *Operation_P,
struct DofData *DofData_P0,
struct GeoData *GeoData_P0)
{
(*shell)->LinearSystemType = LinearSystemType;
(*shell)->MyField = MyField;
(*shell)->AllField = AllField;
(*shell)->Resolution_P = Resolution_P;
(*shell)->Operation_P = Operation_P;
(*shell)->DofData_P0 = DofData_P0;
(*shell)->GeoData_P0 = GeoData_P0;
PetscFunctionReturn(0);
}
// User Matrix-vector product
static PetscErrorCode MatMultILSMat(Mat A, Vec X, Vec Y)
{
std::vector<std::vector<std::vector<double> > > std_vec;
ILSField MyField, AllField;
ILSMat *ctx;
char *LinearSystemType;
#ifdef TIMER
double tBcast_start, tBcast_end;
double tTreatment_start, tTreatment_end;
double t_start = MPI_Wtime(), t_end;
#endif
_try(MatShellGetContext(A, (void**)&ctx));
LinearSystemType = ctx->LinearSystemType;
// convert X to a std vector
_try(PETSc_Vec_to_STD_Vec(X, ctx->MyField, &std_vec));
// Update PViews
for (int cpt_view = 0; cpt_view < ctx->MyField->nb_field; cpt_view++){
PView *view = GetViewByTag(ctx->MyField->GmshTag[cpt_view]);
view->getData()->fromVector(std_vec[cpt_view]);
}
// PVIEW BCAST
#ifdef TIMER
tBcast_start = MPI_Wtime();
#endif
PViewBCast(*(ctx->MyField), *(ctx->AllField));
#ifdef TIMER
tBcast_end = MPI_Wtime();
#endif
// Getdp resolution (contained in the matrix context)
// Barrier to ensure that every process have the good data in RAM
#ifdef TIMER
tTreatment_start = MPI_Wtime();
#endif
Treatment_Operation(ctx->Resolution_P,
ctx->Operation_P->Case.IterativeLinearSolver.Operations_Ax,
ctx->DofData_P0,
ctx->GeoData_P0,
NULL, NULL);
#ifdef TIMER
tTreatment_end = MPI_Wtime();
#endif
// Extract the (std) vector from the (new) .pos files
// This assumes that every process reads every .pos files
for(int cpt_view = 0; cpt_view < ctx->MyField->nb_field; cpt_view++) {
PView *view = GetViewByTag(ctx->MyField->GmshTag[cpt_view]);
view->getData()->toVector(std_vec[cpt_view]);
}
// Convert the obtained vector to a Petsc Vec
_try(STD_vector_to_PETSc_Vec(std_vec, Y, ctx->MyField));
// Set Y = X - Y
if(!strcmp(LinearSystemType,"I-A"))
_try(VecAYPX(Y, -1.,X));
else if(!strcmp(LinearSystemType,"I+A"))
_try(VecAYPX(Y, 1.,X));
#ifdef TIMER
// time computation
t_end = MPI_Wtime();
double t_MatMult, t_Bcast, t_Treatment;
t_MatMult = t_end - t_start;
t_Bcast = tBcast_end - tBcast_start;
t_Treatment = tTreatment_end - tTreatment_start;
ctx->MyField->TimeTreatment.push_back(t_Treatment);
ctx->MyField->TimeBcast.push_back(t_Bcast);
ctx->MyField->TimeIt.push_back(t_MatMult);
Message::Info(3, "Processus %d ended iteration in %g seconds with %g for communication",
Message::GetCommRank(), t_MatMult, t_Bcast);
#endif
_try(PetscBarrier((PetscObject)PETSC_NULL));
PetscFunctionReturn(0);
}
// Build the iteration matrix of the Matrix-free vector-product.
// Used to, e.g., study eigenvalues of the operators
static PetscErrorCode BuildIterationMatrix(Mat A, Mat *IterationMatrix)
{
const PetscScalar one = 1., zero = 0.;
PetscInt n_proc, m,n, m_loc, n_loc;
PetscInt m_start, m_end, vec_m_start, vec_m_end;
_try(MPI_Comm_size(PETSC_COMM_WORLD, &n_proc));
_try(MatGetSize(A, &m, &n));
_try(MatCreate(PETSC_COMM_WORLD, IterationMatrix));
_try(MatSetSizes((*IterationMatrix), PETSC_DECIDE, PETSC_DECIDE, m, n));
_try(MatSetType((*IterationMatrix), MATMPIAIJ));
_try(MatSetFromOptions((*IterationMatrix)));
_try(MatSetUp((*IterationMatrix)));
_try(MatGetOwnershipRange((*IterationMatrix), &m_start, &m_end));
_try(MatGetLocalSize((*IterationMatrix), &m_loc, &n_loc));
_try(MatMPIAIJSetPreallocation((*IterationMatrix), m_loc, PETSC_NULL,
n-m_loc, PETSC_NULL));
std::vector<PetscInt> ix(m);
for(PetscInt i = 0; i<m; i++)
ix[i] = m_start + i;
Vec ej, Aej;
_try(VecCreateSeq(PETSC_COMM_SELF, m, &ej));
_try(VecDuplicate(ej, &Aej));
_try(VecGetOwnershipRange(ej, &vec_m_start, &vec_m_end));
for(int cpt=0;cpt<n;cpt++){
Message::Info(3, "Column number %d over %d", cpt, n-1);
std::vector<PetscScalar> vec_temp(n);
_try(VecSet(ej, zero));
if(cpt >= vec_m_start && cpt<vec_m_end)
_try(VecSetValues(ej, 1., &cpt, &one, INSERT_VALUES));
_try(VecAssemblyBegin(ej));
_try(VecAssemblyEnd(ej));
_try(MatMultILSMat(A, ej, Aej));
// storing it in a Matrix
_try(VecGetValues(Aej, m_loc, &ix[0], &vec_temp[0]));
_try(MatSetValues((*IterationMatrix), m_loc, &ix[0], 1, &cpt, &vec_temp[0],
INSERT_VALUES));
if(cpt%100 == 0){ // flushing
_try(MatAssemblyBegin((*IterationMatrix), MAT_FLUSH_ASSEMBLY));
_try(MatAssemblyEnd((*IterationMatrix), MAT_FLUSH_ASSEMBLY));
}
}
_try(MatAssemblyBegin((*IterationMatrix), MAT_FINAL_ASSEMBLY));
_try(MatAssemblyEnd((*IterationMatrix), MAT_FINAL_ASSEMBLY));
PetscFunctionReturn(0);
}
// Print Iteration Matrix into file_IterationMatrix.m (matlab reading)
static PetscErrorCode PrintMatrix(Mat A, const char* filename, const char* varname)
{
// This function is copy/paste of function LinAlg_PrintMatrix function located
// in Kernel/LinAlg_PETSC.cpp
std::string tmp(filename);
PetscInt m,n;
_try(PetscObjectSetName((PetscObject)A, varname));
// ASCII (if the matrix is not too large)
_try(MatGetSize(A, &m, &n));
PetscViewer viewer;
_try(PetscViewerASCIIOpen(PETSC_COMM_WORLD, filename, &viewer));
_try(PetscViewerSetFormat(viewer, PETSC_VIEWER_ASCII_MATLAB));
_try(MatView(A, viewer));
#if (PETSC_VERSION_RELEASE == 0 || ((PETSC_VERSION_MAJOR == 3) && (PETSC_VERSION_MINOR >= 2)))
_try(PetscViewerDestroy(&viewer));
#else
_try(PetscViewerDestroy(viewer));
#endif
// BINARY
// Add the petscfolder/bin/matlab path to your matlab paths and
// type the following command in matlab, for real arithmetic :
// A = PetscBinaryRead(filename) ;
// and for complex arithmetic :
// A = PetscBinaryRead(filename , 'complex', true) ;
PetscViewer viewer_bin;
_try(PetscViewerBinaryOpen(PETSC_COMM_WORLD, (tmp + ".bin").c_str(),
FILE_MODE_WRITE, &viewer_bin));
_try(PetscViewerSetFormat(viewer_bin, PETSC_VIEWER_DEFAULT));
_try(MatView(A, viewer_bin));
#if (PETSC_VERSION_RELEASE == 0 || ((PETSC_VERSION_MAJOR == 3) && (PETSC_VERSION_MINOR >= 2)))
_try(PetscViewerDestroy(&viewer_bin));
#else
_try(PetscViewerDestroy(viewer_bin));
#endif
PetscFunctionReturn(0);
}
// Print a SEQUENTIAL Petsc Vec into a Matlab File
static PetscErrorCode PrintVecSeq(Vec b, const char* filename, const char* varname)
{
std::string tmp(filename);
PetscViewer viewer, viewer_bin;
_try(PetscObjectSetName((PetscObject)b, varname));
_try(PetscViewerASCIIOpen(PETSC_COMM_SELF, filename, &viewer));
_try(PetscViewerSetFormat(viewer, PETSC_VIEWER_ASCII_MATLAB));
// see PrintMat function for the how-to use it
_try(PetscViewerBinaryOpen(PETSC_COMM_SELF, (tmp + ".bin").c_str(),
FILE_MODE_WRITE, &viewer_bin));
_try(PetscViewerSetFormat(viewer_bin, PETSC_VIEWER_DEFAULT));
VecView(b, viewer);
VecView(b, viewer_bin);
#if (PETSC_VERSION_RELEASE == 0 || ((PETSC_VERSION_MAJOR == 3) && (PETSC_VERSION_MINOR >= 2)))
_try(PetscViewerDestroy(&viewer));
_try(PetscViewerDestroy(&viewer_bin));
#else
_try(PetscViewerDestroy(viewer));
_try(PetscViewerDestroy(viewer_bin));
#endif
PetscFunctionReturn(0);
}
// Print a Petsc Vec into a Matlab File - FIXME: to be changed!
static PetscErrorCode PrintVec(Vec b, const char* filename, const char* varname)
{
// This function is copy/paste of function LinAlg_PrintMatrix function
// located in Kernel/LinAlg_PETSC.cpp
#if (PETSC_VERSION_MAJOR == 0) || ((PETSC_VERSION_MAJOR == 3) && (PETSC_VERSION_MINOR >= 4))
const char *type = "";
#else
const VecType type;
#endif
_try(VecGetType(b, &type));
if(!strcmp(type, "seq")){ // AND NUM_PROC > 1 !
_try(PrintVecSeq(b, filename, varname));
PetscFunctionReturn(0);
}
PetscViewer viewer, viewer_bin;
std::string tmp(filename);
_try(PetscObjectSetName((PetscObject)b, varname));
// ASCII
_try(PetscViewerASCIIOpen(PETSC_COMM_WORLD, filename, &viewer));
_try(PetscViewerSetFormat(viewer, PETSC_VIEWER_ASCII_MATLAB));
// see PrintMat function for the how-to use it
_try(PetscViewerBinaryOpen(PETSC_COMM_WORLD, (tmp + ".bin").c_str(),
FILE_MODE_WRITE, &viewer_bin));
_try(PetscViewerSetFormat(viewer_bin, PETSC_VIEWER_DEFAULT));
VecView(b, viewer);
VecView(b, viewer_bin);
#if (PETSC_VERSION_RELEASE == 0 || ((PETSC_VERSION_MAJOR == 3) && (PETSC_VERSION_MINOR >= 2)))
_try(PetscViewerDestroy(&viewer));
_try(PetscViewerDestroy(&viewer_bin));
#else
_try(PetscViewerDestroy(viewer));
_try(PetscViewerDestroy(viewer_bin));
#endif
PetscFunctionReturn(0);
}
static PetscErrorCode Jacobi_Solver(Mat A, Vec X, Vec B, double Tol, int MaxIter)
{
Vec X_old, W;
double residu;
_try(VecSet(X, 0.));
_try(VecDuplicate(X, &X_old));
_try(VecDuplicate(X, &W));
_try(VecCopy(X, W));
for (int j=1; j < MaxIter; j++){
_try(VecCopy(X, X_old));
_try(MatMultILSMat(A, X_old, X));
_try(VecAYPX(X, 1.,B)); // X = X + B
//convergence test
_try(VecWAXPY(W, -1.,X_old, X)); //W = X-X_old
_try(VecNorm(W, NORM_2, &residu));
Message::Info(3, "Jacobi iteration %d residual %g", j, residu);
if(residu < Tol) break;
}
PetscFunctionReturn(0);
}
// matrix-free preconditionning
// Matrix-vector product for the preconditioning. Quite a copy/past of MatMultILSMat
static PetscErrorCode MatMultPC(PC pc, Vec X, Vec Y)
{
std::vector<std::vector<std::vector<double> > > std_vec;
ILSField MyField, AllField;
ILSMat *ctx;
_try(PCShellGetContext(pc, (void**)&ctx));
//convert X to a std vector
_try(PETSc_Vec_to_STD_Vec(X, ctx->MyField, &std_vec));
// Update PViews
for (int cpt_view = 0; cpt_view < ctx->MyField->nb_field; cpt_view++){
PView *view = GetViewByTag(ctx->MyField->GmshTag[cpt_view]);
view->getData()->fromVector(std_vec[cpt_view]);
}
// PVIEW BCAST !
PViewBCast(*(ctx->MyField), *(ctx->AllField));
// Getdp resolution (contained in the matrix context)
Treatment_Operation(ctx->Resolution_P,
ctx->Operation_P->Case.IterativeLinearSolver.Operations_Mx,
ctx->DofData_P0,
ctx->GeoData_P0,
NULL, NULL);
// Extract the (std) vector from the (new) .pos files
// This assumes that every process reads every .pos files
for(int cpt_view = 0; cpt_view < ctx->MyField->nb_field; cpt_view++) {
PView *view = GetViewByTag(ctx->MyField->GmshTag[cpt_view]);
view->getData()->toVector(std_vec[cpt_view]);
}
//Convert the obtained vector to a Petsc Vec
_try(STD_vector_to_PETSc_Vec(std_vec, Y, ctx->MyField));
_try(PetscBarrier((PetscObject)PETSC_NULL));
PetscFunctionReturn(0);
}
static int KspMonitor(KSP ksp, PetscInt it, PetscReal rnorm, void *mctx)
{
Message::Cpu(3, false, true, true, true, false, "%3ld KSP Residual norm %14.12e",
(long)it, rnorm);
Current.KSPIteration = it;
Current.KSPResidual = rnorm;
return 0;
}
int Operation_IterativeLinearSolver(struct Resolution *Resolution_P,
struct Operation *Operation_P,
struct DofData *DofData_P0,
struct GeoData *GeoData_P0)
{
int mpi_comm_size = Message::GetCommSize();
int mpi_comm_rank = Message::GetCommRank();
ILSMat *ctx, *ctx_pc; // Matrix Shell context and PC context
Mat A;
KSP ksp;
std::string Solver;
int MaxIter, Restart;
double Tol;
std::vector<std::vector<std::vector<double> > > B_std; // rhs (std version)
Vec B, X; // rhs and Solution
PC pc;
MPI_Comm ILSComm = PETSC_COMM_WORLD; // by default, KSP is launched in parallel
char *LinearSystemType;
ILSField MyField, AllField;
#if defined(TIMER)
double time_total = 0.;
double time_start = MPI_Wtime();
#endif
// Initializing
MPI_Barrier(PETSC_COMM_WORLD);
Message::Info("Initializing Iterative Linear Solver");
InitData(&MyField, &AllField, Operation_P, &B_std);
// Print Information
Tol = Operation_P->Case.IterativeLinearSolver.Tolerance;
MaxIter = Operation_P->Case.IterativeLinearSolver.MaxIter;
Restart = Operation_P->Case.IterativeLinearSolver.Restart;
Solver = Operation_P->Case.IterativeLinearSolver.Type;
LinearSystemType = Operation_P->Case.IterativeLinearSolver.OpMatMult;
if(strcmp(LinearSystemType, "I-A") &&
strcmp(LinearSystemType, "I+A") &&
strcmp(LinearSystemType, "A")){
Message::Error("Linear system type \"%s\" unknown. Try \"A\", \"I-A\" or \"I+A\".",
LinearSystemType);
}
Message::Info(3, "Linear system type: (%s)X = B", LinearSystemType);
Message::Info(3, "Number of Processes: %d", mpi_comm_size);
Message::Info(3, "Iterative solver: %s", Solver.c_str());
Message::Info(3, "Tolerance: %g", Tol);
Message::Info(3, "Max. numb. of iterations: %i", MaxIter);
Message::Info(3, "Restart: %i", Restart);
// if jacobi then MatMult(A,X) = A*X for linear system (I-A)*X=B
if(Solver == "jacobi"){
if(strcmp(LinearSystemType, "I-A"))
Message::Error("Jacobi method implemented only for linear system of type \"I-A\"");
LinearSystemType = (char *)"A";
}
Message::Info(3, "Number of Fields: %d", AllField.nb_field);
if(ILSField::areNeighbor)
Message::Info(3, "Neighbors are specified: Fast exchange between process");
for(int iField = 0; iField < AllField.nb_field; iField++)
Message::Info(3, "Size of Field %d: %d (on CPU %d)", AllField.GmshTag[iField],
AllField.size[iField], AllField.rank[iField]);
Message::Info(3, "Total system size: %d", AllField.n_elem);
#if !defined(PETSC_USE_COMPLEX)
if(Current.NbrHar == 2){
AllField.n_elem *= 2;
MyField.n_elem *= 2;
Message::Info(3, "PETSc REAL arithmetic: system size is doubled: n=%d",
AllField.n_elem);
}
#endif
// Creating the vector/matrix
// Petsc Vec of unknown
_try(VecCreate(ILSComm, &X));
_try(VecSetSizes(X, MyField.n_elem, AllField.n_elem));
_try(VecSetFromOptions(X));
// Petsc Vec Right Hand Side
_try(VecDuplicate(X, &B));
STD_vector_to_PETSc_Vec(B_std, B, &MyField);
// context of the shell matrix
_try(CreateILSMat(&ctx));
_try(SetILSMat(&ctx, LinearSystemType, &MyField, &AllField, Resolution_P,
Operation_P, DofData_P0, GeoData_P0));
// Shell matrix containg the indices of the unknown field (on which the
// iterative solver works)
_try(MatCreateShell(ILSComm, MyField.n_elem, MyField.n_elem, AllField.n_elem,
AllField.n_elem, ctx, &A));
_try(MatShellSetContext(A, ctx));
_try(MatShellSetOperation(A, MATOP_MULT, (void(*)(void))MatMultILSMat));
_try(PetscBarrier((PetscObject)PETSC_NULL));
// Creation of the iterative solver + solving
if(Solver == "print"){
// Print the iteration matrix
Message::Info(3, "Launching Print mode (no resolution):");
Message::Info(3, "Building Iteration Matrix...");
Mat IterationMatrix;
_try(BuildIterationMatrix(A, &IterationMatrix));
Message::Info(3, "Printing Iteration Matrix...");
_try(PrintMatrix(IterationMatrix, "file_mat_itmat.m", "IterationMatrix"));
Message::Info(3, "Printing Right Hand Side...");
_try(PrintVec(B, "file_vec_rhs.m", "RightHandSide"));
Message::Info(3, "done");
#if (PETSC_VERSION_RELEASE == 0 || ((PETSC_VERSION_MAJOR == 3) && (PETSC_VERSION_MINOR >= 2)))
_try(VecDestroy(&X));
_try(VecDestroy(&B));
_try(MatDestroy(&A));
#else
_try(VecDestroy(X));
_try(VecDestroy(B));
_try(MatDestroy(A));
#endif
PetscFunctionReturn(0);
}
else if(Solver == "jacobi"){
_try(Jacobi_Solver(A, X, B, Tol, MaxIter));
}
else{
// Krylov subspace solver
_try(KSPCreate(ILSComm,&ksp));
#if (PETSC_VERSION_RELEASE == 0 || ((PETSC_VERSION_MAJOR == 3) && (PETSC_VERSION_MINOR >= 5)))
_try(KSPSetOperators(ksp, A, A));
#else
_try(KSPSetOperators(ksp, A, A, DIFFERENT_NONZERO_PATTERN));
#endif
_try(KSPSetTolerances(ksp, Tol, PETSC_DEFAULT, PETSC_DEFAULT, MaxIter));
_try(KSPMonitorSet(ksp, KspMonitor, PETSC_NULL, PETSC_NULL));
//Preconditioning
bool pcright = true;
std::string match = "_pcleft";
int pos = (int)Solver.find(match.c_str());
if(pos != (int)std::string::npos){
Solver.replace(pos, match.size(), "");
pcright = false;
}
_try(KSPGetPC(ksp, &pc));
// check if a preconditioner is specified
int nb_pc = List_Nbr(Operation_P->Case.IterativeLinearSolver.Operations_Mx);
if(nb_pc == 0) {
_try(PCSetType(pc, PCNONE));
}
else{
Message::Info(3, "%s preconditioner detected", pcright ? "Right" : "Left");
// context of the shell PC
_try(CreateILSMat(&ctx_pc));
_try(SetILSMat(&ctx_pc, LinearSystemType, &MyField, &AllField, Resolution_P,
Operation_P, DofData_P0, GeoData_P0));
// Shell PC
_try(PCSetType(pc,PCSHELL));
_try(PCShellSetContext(pc, ctx_pc));
_try(PCShellSetApply(pc, MatMultPC));
#if (PETSC_VERSION_RELEASE == 0 || ((PETSC_VERSION_MAJOR == 3) && (PETSC_VERSION_MINOR >= 2)))
_try(KSPSetPCSide(ksp, pcright ? PC_RIGHT : PC_LEFT));
#else
_try(KSPSetPreconditionerSide(ksp, pcright ? PC_RIGHT : PC_LEFT));
#endif
}
_try(KSPSetType(ksp, Solver.c_str()));
if(Restart > 0 && Solver.find("gmres") != std::string::npos)
_try(KSPGMRESSetRestart(ksp, Restart));
// set ksp
_try(KSPSetFromOptions(ksp));
// Solve
_try(KSPSolve(ksp, B, X));
_try(KSPView(ksp, PETSC_VIEWER_STDOUT_WORLD));
PetscInt its;
_try(KSPGetIterationNumber(ksp, &its));
Current.KSPIterations = its;
#if (PETSC_VERSION_RELEASE == 0 || ((PETSC_VERSION_MAJOR == 3) && (PETSC_VERSION_MINOR >= 2)))
_try(KSPDestroy(&ksp));
#else
_try(KSPDestroy(ksp));
#endif
}
// computing solution
// we reuse B_std to avoid the creation of a new std::vector ...
_try(PETSc_Vec_to_STD_Vec(X, &MyField, &B_std));
// update views
for (int cpt_view = 0 ; cpt_view < MyField.nb_field; cpt_view++){
PView *view = GetViewByTag(MyField.GmshTag[cpt_view]);
view->getData()->fromVector(B_std[cpt_view]);
}
// Transfer PView
#ifdef TIMER
double tbcast_start = MPI_Wtime();
#endif
PViewBCast(MyField, AllField);
#ifdef TIMER
double tbcast_end = MPI_Wtime();
double t_bcast = tbcast_end - tbcast_start;
Message::Info(3, "Process %d: tbcast = %g", mpi_comm_rank, t_bcast);
#endif
// cleaning
#if (PETSC_VERSION_RELEASE == 0 || ((PETSC_VERSION_MAJOR == 3) && (PETSC_VERSION_MINOR >= 2)))
_try(VecDestroy(&X));
_try(VecDestroy(&B));
_try(MatDestroy(&A));
#else
_try(VecDestroy(X));
_try(VecDestroy(B));
_try(MatDestroy(A));
#endif
#ifdef TIMER
time_total = MPI_Wtime() - time_start;
#endif
if(MyField.TimeBcast.size()){
// CPU Times
double aver_it = 0, aver_com = 0;
char filename[50];
FILE *fid;
sprintf(filename, "log_cpu_%d", mpi_comm_rank);
fid = FOpen(filename, "w");
fprintf(fid, "Process rank %d\n", mpi_comm_rank);
fprintf(fid, "it. CPU Total \t ... Treatment \t ... Communication\n");
for (unsigned int i = 0; i < MyField.TimeBcast.size() ; i ++){
fprintf(fid, "%d \t%g\t %g\t %g\t (%g%%)\n", i+1, MyField.TimeIt[i],
MyField.TimeTreatment[i], MyField.TimeBcast[i],
MyField.TimeBcast[i]/MyField.TimeIt[i]*100);
aver_com += MyField.TimeBcast[i]/MyField.TimeBcast.size();
aver_it += MyField.TimeIt[i]/MyField.TimeIt.size();
}
fprintf(fid, "Average: %g %g\n", aver_it, aver_com);
fprintf(fid, "Percent of communication in average: %g%%\n", aver_com/aver_it*100);
fclose(fid);
#ifdef TIMER
Message::Info(3, "Processus %d: ended in %g", mpi_comm_rank, time_total);
Message::Info(3, "Processus %d: Average iteration time %g with %g for communication (%g%%)",
mpi_comm_rank, aver_it, aver_com, aver_com/aver_it*100);
#endif
}
// reset pointers to static fields
MyStaticField = AllStaticField = 0;
_try(PetscBarrier((PetscObject)PETSC_NULL));
PetscFunctionReturn(0);
}
int Operation_BroadcastFields(struct Resolution *Resolution_P,
struct Operation *Operation_P,
struct DofData *DofData_P0,
struct GeoData *GeoData_P0)
{
std::set<int> fieldsToSkip;
for(int i = 0; i < List_Nbr(Operation_P->Case.BroadcastFields.FieldsToSkip); i++){
double j;
List_Read(Operation_P->Case.BroadcastFields.FieldsToSkip, i, &j);
fieldsToSkip.insert((int) j);
}
PViewBCast(*MyStaticField, *AllStaticField, fieldsToSkip);
return 0;
}
#else
int Operation_IterativeLinearSolver(struct Resolution *Resolution_P,
struct Operation *Operation_P,
struct DofData *DofData_P0,
struct GeoData *GeoData_P0)
{
Message::Error("IterativeLinearSolver requires PETSc and Gmsh");
return 0;
}
int Operation_BroadcastFields(struct Resolution *Resolution_P,
struct Operation *Operation_P,
struct DofData *DofData_P0,
struct GeoData *GeoData_P0)
{
Message::Error("BroadcastFields requires PETSc and Gmsh");
return 0;
}
#endif
|