1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
// GetDP - Copyright (C) 1997-2018 P. Dular and C. Geuzaine, University of Liege
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/getdp/getdp/issues
//
// Contributor(s):
// Ruth Sabariego
//
#include <math.h>
#include <stdio.h>
#include "Message.h"
#define THESIGN(a) ((a)>=0 ? 1 : -1)
#define THEABS(a) ((a)>=0 ? a : -a)
#define ONE_OVER_FOUR_PI 7.9577471545947668E-02
double Factorial(double n)
{
/* FACTORIAL(n) is the product of all the integers from 1 to n */
double F ;
if ( n < 0 ){
Message::Error("Factorial(n): n must be a positive integer") ;
return 0;
}
if ( n == 0 ) return 1. ;
if ( n <= 2 ) return n ;
F = n ;
while ( n > 2 ){ n-- ; F *= n ; }
return F;
}
double BinomialCoef(double n, double m)
{
/* Binomial Coefficients: (n m) Computes de number of ways of
choosing m objects from a collection of n distinct objects */
int i ;
double B = 1. ;
if (m==0 || n==m) return 1. ;
for(i = (int)n ; i > m ; i--)
B *= (double)i/(double)(i-m);
return B;
}
double Legendre(int l, int m, double x)
{
/* Computes the associated Legendre polynomial P_l^m(x). Here the
degree l and the order m are the integers satisfying -l<=m<=l,
while x lies in the range -1<=x<=1 */
double fact, pll=0., pmm, pmmp1, somx2, Cte ;
int i, ll;
if ( THEABS(m) > l || fabs(x) > 1.){
Message::Error("Bad arguments for Legendre: P_l^m(x) with -l<=m<=l (int),"
" -1<=x<=1 l = %d m = %d x = %.8g", l, m, x);
return 0.;
}
Cte = (m > 0) ? 1. : Factorial((double)(l-THEABS(m))) /
Factorial((double)(l+THEABS(m))) * pow(-1.,(double)THEABS(m)) ;
m = THEABS(m) ;
pmm = 1. ;
if (m > 0) {
somx2 = sqrt((1.-x)*(1.+x)) ;
fact = 1. ;
for (i=1;i<=m;i++){
pmm *= -fact*somx2 ;
fact += 2. ;
}
}
if (l==m){
return Cte*pmm ;
}
else {
pmmp1 = x * (2*m+1)*pmm ;
if (l==(m+1)){
return Cte*pmmp1 ;
}
else {
for (ll=(m+2);ll<=l;ll++) {
pll = (x*(2*ll-1)*pmmp1-(ll+m-1)*pmm)/(ll-m) ;
pmm = pmmp1 ;
pmmp1 = pll ;
}
return Cte*pll ;
}
}
}
void LegendreRecursive(int l, int m, double x, double P[])
{
/* Computes recursively a (l+1)-terms sequence of the associated
Legendre polynomial P_l^m(x).
l and m are the integers satisfying 0<=m<=l
x lies in the range -1<=x<=1
l = maximum order considered, m = invariable */
int il ;
double Pl_m, Plm1_m ;
P[0] = Plm1_m = Legendre(0, m, x) ;
P[1] = Pl_m = Legendre(1, m, x) ;
if (l >=2)
for(il = 1 ; il < l ; il ++){
P[il+1] = (2*il+1)*x*Pl_m/(il-m+1) + (il+m)*Plm1_m/(m-il-1) ;
Plm1_m = Pl_m ;
Pl_m = P[il+1];
}
}
void LegendreRecursiveM(int l, double x, double P[])
{
/* Computes recursively a (l+1)-terms sequence of the associated
Legendre polynomial P_l^m(x).
x lies in the range -1<=x<=1, l = invariable, -l<=m<=l */
int m ;
double Pl_m, Plm1_m ;
if (fabs(x) == 1.)
for(m = -l ; m <= l ; m ++)
P[l+m] = (m==0) ? pow(THESIGN(x),(double)l) : 0. ;
else{
if (l==0){
P[0] = Legendre(0, 0, x) ;
return;
}
P[0] = Plm1_m = Legendre(l, -l, x) ;
P[1] = Pl_m = Legendre(l, -l+1, x) ;
if (l >= 1)
for(m = -l+1 ; m < l ; m ++){
P[l+m+1] = -2*m*x*Pl_m/sqrt(1-x*x) + (m*(m-1)-l*(l+1))*Plm1_m ;
Plm1_m = Pl_m ;
Pl_m = P[l+m+1];
}
else return ;
}
}
double dLegendre (int l, int m, double x)
{
/* Computes the derivative of the associated Legendre polynomial
P_l^m(x) */
double dpl;
if ( THEABS(m) > l || fabs(x) > 1.){
Message::Error("Bad arguments for dLegendre: -l<=m<=l (integers), -1<=x<=1."
" Current values: l %d m %d x %.8g", l, m, x) ;
return 0.;
}
if (fabs(x)==1.) dpl = 0.;
else
dpl = ((l+m)*(l-m+1)*sqrt(1-x*x)*((THEABS((m-1))>l) ? 0. :
Legendre(l, m-1, x)) + m*x* Legendre (l,m,x))/(1-x*x);
return dpl;
}
double dLegendreFinDif (int l, int m, double x)
{
/* Computes the derivative of the associated Legendre polynomial
P_l^m(x) using Finite Differences: f'(x) = (f(x+\delta
x)-f(x-\delta x))/(2 \delta) */
double dpl, delta = 1e-6;
if ( THEABS(m) > l || fabs(x) > 1.){
Message::Error("Bad arguments for dLegendreFinDif: -l<=m<=l (integers), "
"-1<=x<=1. Current values: l %d m %d x %.8g", l, m, x );
return 0.;
}
dpl = (Legendre (l, m, x+delta) - Legendre (l, m, x-delta))/(2*delta);
return dpl;
}
void SphericalHarmonics(int l, int m, double Theta, double Phi, double Yl_m[])
{
int am ;
double cn, Pl_m, F, cRe ;
cn = sqrt((2*l+1)*ONE_OVER_FOUR_PI) ; /* Normalization Factor */
am = THESIGN(m)*m ;
F= sqrt(Factorial((double)(l-am))/ Factorial((double)(l+am))) ;
Pl_m = Legendre(l, am, cos(Theta));
cRe = cn * F * Pl_m ;
Yl_m[0] = cRe*cos(m*Phi) ;
Yl_m[1] = cRe*sin(m*Phi) ;
}
|