File: NumericUtils.cpp

package info (click to toggle)
getdp 3.0.4%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 10,856 kB
  • sloc: cpp: 63,020; fortran: 13,955; yacc: 9,350; f90: 1,640; lex: 799; makefile: 55; ansic: 34; awk: 33; sh: 23
file content (187 lines) | stat: -rw-r--r-- 4,267 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// GetDP - Copyright (C) 1997-2018 P. Dular and C. Geuzaine, University of Liege
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/getdp/getdp/issues

#include "GetDPConfig.h"
#include "Message.h"

#if !defined(HAVE_GSL) && !defined(HAVE_NR)

double brent(double ax, double bx, double cx,
             double (*f) (double), double tol, double *xmin)
{
  Message::Error("Minimization routines require GSL or NR");
  return 0;
}

void mnbrak(double *ax, double *bx, double *cx,
            double *fa_dummy, double *fb_dummy, double *fc_dummy,
            double (*func) (double))
{
  Message::Error("Minimization routines require GSL or NR");
}

#endif

#if defined(HAVE_GSL)

#include <gsl/gsl_errno.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_min.h>

static double (*nrfunc) (double);

double fn1(double x, void *params)
{
  double val = nrfunc(x);
  return val;
}

#define MAXITER 100

// Returns the minimum betwen ax and cx to a given tolerance tol using
// brent's method.

double brent(double ax, double bx, double cx,
             double (*f) (double), double tol, double *xmin)
{
  int status;
  int iter = 0;
  double a, b, c;               // a < b < c
  const gsl_min_fminimizer_type *T;
  gsl_min_fminimizer *s;
  gsl_function F;

  // gsl wants a<b
  b = bx;
  if(ax < cx) {
    a = ax;
    c = cx;
  }
  else {
    a = ax;
    c = cx;
  }

  // if a-b < tol, return func(a)
  if(fabs(c - a) < tol) {
    *xmin = ax;
    return (f(*xmin));
  }

  nrfunc = f;

  F.function = &fn1;
  F.params = 0;

  T = gsl_min_fminimizer_brent;
  s = gsl_min_fminimizer_alloc(T);
  gsl_min_fminimizer_set(s, &F, b, a, c);

  do {
    iter++;
    status = gsl_min_fminimizer_iterate(s);
    if(status)
      break;    // solver problem
    b = gsl_min_fminimizer_minimum(s);
    // this is deprecated: we should use gsl_min_fminimizer_x_minimum(s) instead
    a = gsl_min_fminimizer_x_lower(s);
    c = gsl_min_fminimizer_x_upper(s);
    // we should think about the tolerance more carefully...
    status = gsl_min_test_interval(a, c, tol, tol);
  }
  while(status == GSL_CONTINUE && iter < MAXITER);

  if(status != GSL_SUCCESS)
    Message::Error("MIN1D not converged: f(%g) = %g", b, fn1(b, NULL));

  *xmin = b;
  gsl_min_fminimizer_free(s);
  return fn1(b, NULL);
}


// Find an initial bracketting of the minimum of func. Given 2 initial
// points ax and bx, mnbrak checks in which direction func decreases,
// and takes some steps in that direction, until the function
// increases--at cx. mnbrak returns ax and cx (possibly switched),
// bracketting a minimum.

#define MYGOLD_  1.618034
#define MYLIMIT_ 100.0
#define MYTINY_  1.0e-20
#define SIGN(a,b)((b) >= 0.0 ? fabs(a) : -fabs(a))

void mnbrak(double *ax, double *bx, double *cx,
            double *fa_dummy, double *fb_dummy, double *fc_dummy,
            double (*func) (double))
{
  double ulim, u, r, q;
  volatile double f_a, f_b, f_c, f_u;

  f_a = (*func) (*ax);
  f_b = (*func) (*bx);
  if(f_b > f_a) {
    double tmp;
    tmp = *ax;
    *ax = *bx;
    *bx = tmp;
    tmp = f_b;
    f_b = f_a;
    f_a = tmp;
  }

  *cx = *bx + MYGOLD_ * (*bx - *ax);
  f_c = (*func) (*cx);

  while(f_b > f_c) {
    r = (*bx - *ax) * (f_b - f_c);
    q = (*bx - *cx) * (f_b - f_a);
    u = (*bx) - ((*bx - *cx) * q - (*bx - *ax) * r) /
      (2.0 * SIGN(std::max(fabs(q - r), MYTINY_), q - r));
    ulim = *bx + MYLIMIT_ * (*cx - *bx);

    if((*bx - u) * (u - *cx) > 0.0) {
      f_u = (*func) (u);
      if(f_u < f_c) {
        *ax = *bx;
        *bx = u;
        return;
      }
      else if(f_u > f_b) {
        *cx = u;
        return;
      }
      u = *cx + MYGOLD_ * (*cx - *bx);
      f_u = (*func) (u);
    }
    else if((*cx - u) * (u - ulim) > 0.0) {
      f_u = (*func) (u);
      if(f_u < f_c) {
        *bx = *cx;
        *cx = u;
        u = *cx + MYGOLD_ * (*cx - *bx);
        f_b = f_c;
        f_c = f_u;
        f_u = (*func) (u);
      }
    }
    else if((u - ulim) * (ulim - *cx) >= 0.0) {
      u = ulim;
      f_u = (*func) (u);
    }
    else {
      u = *cx + MYGOLD_ * (*cx - *bx);
      f_u = (*func) (u);
    }
    *ax = *bx;
    *bx = *cx;
    *cx = u;
    f_a = f_b;
    f_b = f_c;
    f_c = f_u;
  }
}

#endif