File: blas1.f

package info (click to toggle)
getdp 3.0.4%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 10,856 kB
  • sloc: cpp: 63,020; fortran: 13,955; yacc: 9,350; f90: 1,640; lex: 799; makefile: 55; ansic: 34; awk: 33; sh: 23
file content (671 lines) | stat: -rw-r--r-- 16,176 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
c $Id: blas1.f,v 1.1 2008-04-11 06:01:05 geuzaine Exp $
      subroutine  dcopy(n,dx,incx,dy,incy)
c
c     copies a vector, x, to a vector, y.
c     uses unrolled loops for increments equal to one.
c     jack dongarra, linpack, 3/11/78.
c
      double precision dx(1),dy(1)
      integer i,incx,incy,ix,iy,m,mp1,n
c
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c        code for unequal increments or equal increments
c          not equal to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        dy(iy) = dx(ix)
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c        code for both increments equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,7)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dy(i) = dx(i)
   30 continue
      if( n .lt. 7 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,7
        dy(i) = dx(i)
        dy(i + 1) = dx(i + 1)
        dy(i + 2) = dx(i + 2)
        dy(i + 3) = dx(i + 3)
        dy(i + 4) = dx(i + 4)
        dy(i + 5) = dx(i + 5)
        dy(i + 6) = dx(i + 6)
   50 continue
      return
      end

      double precision function ddot(n,dx,incx,dy,incy)
c
c     forms the dot product of two vectors.
c     uses unrolled loops for increments equal to one.
c     jack dongarra, linpack, 3/11/78.
c
      double precision dx(1),dy(1),dtemp
      integer i,incx,incy,ix,iy,m,mp1,n
c
      ddot = 0.0d0
      dtemp = 0.0d0
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c        code for unequal increments or equal increments
c          not equal to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        dtemp = dtemp + dx(ix)*dy(iy)
        ix = ix + incx
        iy = iy + incy
   10 continue
      ddot = dtemp
      return
c
c        code for both increments equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,5)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dtemp = dtemp + dx(i)*dy(i)
   30 continue
      if( n .lt. 5 ) go to 60
   40 mp1 = m + 1
      do 50 i = mp1,n,5
        dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) +
     *   dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4)
   50 continue
   60 ddot = dtemp
      return
      end
c
      double precision function dasum(n,dx,incx)
c
c     takes the sum of the absolute values.
c     jack dongarra, linpack, 3/11/78.
c
      double precision dx(1),dtemp
      integer i,incx,m,mp1,n,nincx
c
      dasum = 0.0d0
      dtemp = 0.0d0
      if(n.le.0)return
      if(incx.eq.1)go to 20
c
c        code for increment not equal to 1
c
      nincx = n*incx
      do 10 i = 1,nincx,incx
        dtemp = dtemp + dabs(dx(i))
   10 continue
      dasum = dtemp
      return
c
c        code for increment equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,6)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dtemp = dtemp + dabs(dx(i))
   30 continue
      if( n .lt. 6 ) go to 60
   40 mp1 = m + 1
      do 50 i = mp1,n,6
        dtemp = dtemp + dabs(dx(i)) + dabs(dx(i + 1)) + dabs(dx(i + 2))
     *  + dabs(dx(i + 3)) + dabs(dx(i + 4)) + dabs(dx(i + 5))
   50 continue
   60 dasum = dtemp
      return
      end

      subroutine daxpy(n,da,dx,incx,dy,incy)
c
c     constant times a vector plus a vector.
c     uses unrolled loops for increments equal to one.
c     jack dongarra, linpack, 3/11/78.
c
      double precision dx(1),dy(1),da
      integer i,incx,incy,ix,iy,m,mp1,n
c
      if(n.le.0)return
      if (da .eq. 0.0d0) return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c        code for unequal increments or equal increments
c          not equal to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        dy(iy) = dy(iy) + da*dx(ix)
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c        code for both increments equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,4)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dy(i) = dy(i) + da*dx(i)
   30 continue
      if( n .lt. 4 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,4
        dy(i) = dy(i) + da*dx(i)
        dy(i + 1) = dy(i + 1) + da*dx(i + 1)
        dy(i + 2) = dy(i + 2) + da*dx(i + 2)
        dy(i + 3) = dy(i + 3) + da*dx(i + 3)
   50 continue
      return
      end
      double precision function dnrm2 ( n, dx, incx)
      integer          next
      double precision   dx(1), cutlo, cuthi, hitest, sum, xmax,zero,one
      data   zero, one /0.0d0, 1.0d0/
c
c     euclidean norm of the n-vector stored in dx() with storage
c     increment incx .
c     if    n .le. 0 return with result = 0.
c     if n .ge. 1 then incx must be .ge. 1
c
c           c.l.lawson, 1978 jan 08
c
c     four phase method     using two built-in constants that are
c     hopefully applicable to all machines.
c         cutlo = maximum of  dsqrt(u/eps)  over all known machines.
c         cuthi = minimum of  dsqrt(v)      over all known machines.
c     where
c         eps = smallest no. such that eps + 1. .gt. 1.
c         u   = smallest positive no.   (underflow limit)
c         v   = largest  no.            (overflow  limit)
c
c     brief outline of algorithm..
c
c     phase 1    scans zero components.
c     move to phase 2 when a component is nonzero and .le. cutlo
c     move to phase 3 when a component is .gt. cutlo
c     move to phase 4 when a component is .ge. cuthi/m
c     where m = n for x() real and m = 2*n for complex.
c
c     values for cutlo and cuthi..
c     from the environmental parameters listed in the imsl converter
c     document the limiting values are as follows..
c     cutlo, s.p.   u/eps = 2**(-102) for  honeywell.  close seconds are
c                   univac and dec at 2**(-103)
c                   thus cutlo = 2**(-51) = 4.44089e-16
c     cuthi, s.p.   v = 2**127 for univac, honeywell, and dec.
c                   thus cuthi = 2**(63.5) = 1.30438e19
c     cutlo, d.p.   u/eps = 2**(-67) for honeywell and dec.
c                   thus cutlo = 2**(-33.5) = 8.23181d-11
c     cuthi, d.p.   same as s.p.  cuthi = 1.30438d19
c     data cutlo, cuthi / 8.232d-11,  1.304d19 /
c     data cutlo, cuthi / 4.441e-16,  1.304e19 /
      data cutlo, cuthi / 8.232d-11,  1.304d19 /
c
      if(n .gt. 0) go to 10
         dnrm2  = zero
         go to 300
c
   10 assign 30 to next
      sum = zero
      nn = n * incx
c                                                 begin main loop
      i = 1
   20    go to next,(30, 50, 70, 110)
   30 if( dabs(dx(i)) .gt. cutlo) go to 85
      assign 50 to next
      xmax = zero
c
c                        phase 1.  sum is zero
c
   50 if( dx(i) .eq. zero) go to 200
      if( dabs(dx(i)) .gt. cutlo) go to 85
c
c                                prepare for phase 2.
      assign 70 to next
      go to 105
c
c                                prepare for phase 4.
c
  100 i = j
      assign 110 to next
      sum = (sum / dx(i)) / dx(i)
  105 xmax = dabs(dx(i))
      go to 115
c
c                   phase 2.  sum is small.
c                             scale to avoid destructive underflow.
c
   70 if( dabs(dx(i)) .gt. cutlo ) go to 75
c
c                     common code for phases 2 and 4.
c                     in phase 4 sum is large.  scale to avoid overflow.
c
  110 if( dabs(dx(i)) .le. xmax ) go to 115
         sum = one + sum * (xmax / dx(i))**2
         xmax = dabs(dx(i))
         go to 200
c
  115 sum = sum + (dx(i)/xmax)**2
      go to 200
c
c
c                  prepare for phase 3.
c
   75 sum = (sum * xmax) * xmax
c
c
c     for real or d.p. set hitest = cuthi/n
c     for complex      set hitest = cuthi/(2*n)
c
   85 hitest = cuthi/float( n )
c
c                   phase 3.  sum is mid-range.  no scaling.
c
      do 95 j =i,nn,incx
      if(dabs(dx(j)) .ge. hitest) go to 100
   95    sum = sum + dx(j)**2
      dnrm2 = dsqrt( sum )
      go to 300
c
  200 continue
      i = i + incx
      if ( i .le. nn ) go to 20
c
c              end of main loop.
c
c              compute square root and adjust for scaling.
c
      dnrm2 = xmax * dsqrt(sum)
  300 continue
      return
      end

      subroutine  dscal(n,da,dx,incx)
c     scales a vector by a constant.
c     uses unrolled loops for increment equal to one.
c     jack dongarra, linpack, 3/11/78.
c
      double precision da,dx(1)
      integer i,incx,m,mp1,n,nincx
c
      if(n.le.0)return
      if(incx.eq.1)go to 20
c
c        code for increment not equal to 1
c
      nincx = n*incx
      do 10 i = 1,nincx,incx
        dx(i) = da*dx(i)
   10 continue
      return
c
c        code for increment equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,5)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dx(i) = da*dx(i)
   30 continue
      if( n .lt. 5 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,5
        dx(i) = da*dx(i)
        dx(i + 1) = da*dx(i + 1)
        dx(i + 2) = da*dx(i + 2)
        dx(i + 3) = da*dx(i + 3)
        dx(i + 4) = da*dx(i + 4)
   50 continue
      return
      end

      subroutine  dswap (n,dx,incx,dy,incy)
c
c     interchanges two vectors.
c     uses unrolled loops for increments equal one.
c     jack dongarra, linpack, 3/11/78.
c
      double precision dx(1),dy(1),dtemp
      integer i,incx,incy,ix,iy,m,mp1,n
c
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c       code for unequal increments or equal increments not equal
c         to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        dtemp = dx(ix)
        dx(ix) = dy(iy)
        dy(iy) = dtemp
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c       code for both increments equal to 1
c
c
c       clean-up loop
c
   20 m = mod(n,3)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dtemp = dx(i)
        dx(i) = dy(i)
        dy(i) = dtemp
   30 continue
      if( n .lt. 3 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,3
        dtemp = dx(i)
        dx(i) = dy(i)
        dy(i) = dtemp
        dtemp = dx(i + 1)
        dx(i + 1) = dy(i + 1)
        dy(i + 1) = dtemp
        dtemp = dx(i + 2)
        dx(i + 2) = dy(i + 2)
        dy(i + 2) = dtemp
   50 continue
      return
      end

      integer function idamax(n,dx,incx)
c
c     finds the index of element having max. absolute value.
c     jack dongarra, linpack, 3/11/78.
c
      double precision dx(1),dmax
      integer i,incx,ix,n
c
      idamax = 0
      if( n .lt. 1 ) return
      idamax = 1
      if(n.eq.1)return
      if(incx.eq.1)go to 20
c
c        code for increment not equal to 1
c
      ix = 1
      dmax = dabs(dx(1))
      ix = ix + incx
      do 10 i = 2,n
         if(dabs(dx(ix)).le.dmax) go to 5
         idamax = i
         dmax = dabs(dx(ix))
    5    ix = ix + incx
   10 continue
      return
c
c        code for increment equal to 1
c
   20 dmax = dabs(dx(1))
      do 30 i = 2,n
         if(dabs(dx(i)).le.dmax) go to 30
         idamax = i
         dmax = dabs(dx(i))
   30 continue
      return
      end
c
      subroutine  drot (n,dx,incx,dy,incy,c,s)
c
c     applies a plane rotation.
c     jack dongarra, linpack, 3/11/78.
c
      double precision dx(1),dy(1),dtemp,c,s
      integer i,incx,incy,ix,iy,n
c
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c       code for unequal increments or equal increments not equal
c         to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        dtemp = c*dx(ix) + s*dy(iy)
        dy(iy) = c*dy(iy) - s*dx(ix)
        dx(ix) = dtemp
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c       code for both increments equal to 1
c
   20 do 30 i = 1,n
        dtemp = c*dx(i) + s*dy(i)
        dy(i) = c*dy(i) - s*dx(i)
        dx(i) = dtemp
   30 continue
      return
      end
c
      subroutine drotg(da,db,c,s)
c
c     construct givens plane rotation.
c     jack dongarra, linpack, 3/11/78.
c
      double precision da,db,c,s,roe,scale,r,z
c
      roe = db
      if( dabs(da) .gt. dabs(db) ) roe = da
      scale = dabs(da) + dabs(db)
      if( scale .ne. 0.0d0 ) go to 10
         c = 1.0d0
         s = 0.0d0
         r = 0.0d0
         go to 20
   10 r = scale*dsqrt((da/scale)**2 + (db/scale)**2)
      r = dsign(1.0d0,roe)*r
      c = da/r
      s = db/r
   20 z = 1.0d0
      if( dabs(da) .gt. dabs(db) ) z = s
      if( dabs(db) .ge. dabs(da) .and. c .ne. 0.0d0 ) z = 1.0d0/c
      da = r
      db = z
      return
      end
c
      subroutine  ccopy(n,cx,incx,cy,incy)
c
c     copies a vector, x, to a vector, y.
c     jack dongarra, linpack, 3/11/78.
c
      complex cx(1),cy(1)
      integer i,incx,incy,ix,iy,n
c
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c        code for unequal increments or equal increments
c          not equal to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        cy(iy) = cx(ix)
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c        code for both increments equal to 1
c
   20 do 30 i = 1,n
        cy(i) = cx(i)
   30 continue
      return
      end
      subroutine  cscal(n,ca,cx,incx)
c
c     scales a vector by a constant.
c     jack dongarra, linpack,  3/11/78.
c
      complex ca,cx(1)
      integer i,incx,n,nincx
c
      if(n.le.0)return
      if(incx.eq.1)go to 20
c
c        code for increment not equal to 1
c
      nincx = n*incx
      do 10 i = 1,nincx,incx
        cx(i) = ca*cx(i)
   10 continue
      return
c
c        code for increment equal to 1
c
   20 do 30 i = 1,n
        cx(i) = ca*cx(i)
   30 continue
      return
      end
c
      subroutine  csrot (n,cx,incx,cy,incy,c,s)
c
c     applies a plane rotation, where the cos and sin (c and s) are real
c     and the vectors cx and cy are complex.
c     jack dongarra, linpack, 3/11/78.
c
      complex cx(1),cy(1),ctemp
      real c,s
      integer i,incx,incy,ix,iy,n
c
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c       code for unequal increments or equal increments not equal
c         to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        ctemp = c*cx(ix) + s*cy(iy)
        cy(iy) = c*cy(iy) - s*cx(ix)
        cx(ix) = ctemp
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c       code for both increments equal to 1
c
   20 do 30 i = 1,n
        ctemp = c*cx(i) + s*cy(i)
        cy(i) = c*cy(i) - s*cx(i)
        cx(i) = ctemp
   30 continue
      return
      end
      subroutine  cswap (n,cx,incx,cy,incy)
c
c     interchanges two vectors.
c     jack dongarra, linpack, 3/11/78.
c
      complex cx(1),cy(1),ctemp
      integer i,incx,incy,ix,iy,n
c
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c       code for unequal increments or equal increments not equal
c         to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        ctemp = cx(ix)
        cx(ix) = cy(iy)
        cy(iy) = ctemp
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c       code for both increments equal to 1
   20 do 30 i = 1,n
        ctemp = cx(i)
        cx(i) = cy(i)
        cy(i) = ctemp
   30 continue
      return
      end
      subroutine  csscal(n,sa,cx,incx)
c
c     scales a complex vector by a real constant.
c     jack dongarra, linpack, 3/11/78.
c
      complex cx(1)
      real sa
      integer i,incx,n,nincx
c
      if(n.le.0)return
      if(incx.eq.1)go to 20
c
c        code for increment not equal to 1
c
      nincx = n*incx
      do 10 i = 1,nincx,incx
        cx(i) = cmplx(sa*real(cx(i)),sa*aimag(cx(i)))
   10 continue
      return
c
c        code for increment equal to 1
c
   20 do 30 i = 1,n
        cx(i) = cmplx(sa*real(cx(i)),sa*aimag(cx(i)))
   30 continue
      return
      end