1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
|
c $Id: blas1.f,v 1.1 2008-04-11 06:01:05 geuzaine Exp $
subroutine dcopy(n,dx,incx,dy,incy)
c
c copies a vector, x, to a vector, y.
c uses unrolled loops for increments equal to one.
c jack dongarra, linpack, 3/11/78.
c
double precision dx(1),dy(1)
integer i,incx,incy,ix,iy,m,mp1,n
c
if(n.le.0)return
if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments
c not equal to 1
c
ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1
do 10 i = 1,n
dy(iy) = dx(ix)
ix = ix + incx
iy = iy + incy
10 continue
return
c
c code for both increments equal to 1
c
c
c clean-up loop
c
20 m = mod(n,7)
if( m .eq. 0 ) go to 40
do 30 i = 1,m
dy(i) = dx(i)
30 continue
if( n .lt. 7 ) return
40 mp1 = m + 1
do 50 i = mp1,n,7
dy(i) = dx(i)
dy(i + 1) = dx(i + 1)
dy(i + 2) = dx(i + 2)
dy(i + 3) = dx(i + 3)
dy(i + 4) = dx(i + 4)
dy(i + 5) = dx(i + 5)
dy(i + 6) = dx(i + 6)
50 continue
return
end
double precision function ddot(n,dx,incx,dy,incy)
c
c forms the dot product of two vectors.
c uses unrolled loops for increments equal to one.
c jack dongarra, linpack, 3/11/78.
c
double precision dx(1),dy(1),dtemp
integer i,incx,incy,ix,iy,m,mp1,n
c
ddot = 0.0d0
dtemp = 0.0d0
if(n.le.0)return
if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments
c not equal to 1
c
ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1
do 10 i = 1,n
dtemp = dtemp + dx(ix)*dy(iy)
ix = ix + incx
iy = iy + incy
10 continue
ddot = dtemp
return
c
c code for both increments equal to 1
c
c
c clean-up loop
c
20 m = mod(n,5)
if( m .eq. 0 ) go to 40
do 30 i = 1,m
dtemp = dtemp + dx(i)*dy(i)
30 continue
if( n .lt. 5 ) go to 60
40 mp1 = m + 1
do 50 i = mp1,n,5
dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) +
* dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4)
50 continue
60 ddot = dtemp
return
end
c
double precision function dasum(n,dx,incx)
c
c takes the sum of the absolute values.
c jack dongarra, linpack, 3/11/78.
c
double precision dx(1),dtemp
integer i,incx,m,mp1,n,nincx
c
dasum = 0.0d0
dtemp = 0.0d0
if(n.le.0)return
if(incx.eq.1)go to 20
c
c code for increment not equal to 1
c
nincx = n*incx
do 10 i = 1,nincx,incx
dtemp = dtemp + dabs(dx(i))
10 continue
dasum = dtemp
return
c
c code for increment equal to 1
c
c
c clean-up loop
c
20 m = mod(n,6)
if( m .eq. 0 ) go to 40
do 30 i = 1,m
dtemp = dtemp + dabs(dx(i))
30 continue
if( n .lt. 6 ) go to 60
40 mp1 = m + 1
do 50 i = mp1,n,6
dtemp = dtemp + dabs(dx(i)) + dabs(dx(i + 1)) + dabs(dx(i + 2))
* + dabs(dx(i + 3)) + dabs(dx(i + 4)) + dabs(dx(i + 5))
50 continue
60 dasum = dtemp
return
end
subroutine daxpy(n,da,dx,incx,dy,incy)
c
c constant times a vector plus a vector.
c uses unrolled loops for increments equal to one.
c jack dongarra, linpack, 3/11/78.
c
double precision dx(1),dy(1),da
integer i,incx,incy,ix,iy,m,mp1,n
c
if(n.le.0)return
if (da .eq. 0.0d0) return
if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments
c not equal to 1
c
ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1
do 10 i = 1,n
dy(iy) = dy(iy) + da*dx(ix)
ix = ix + incx
iy = iy + incy
10 continue
return
c
c code for both increments equal to 1
c
c
c clean-up loop
c
20 m = mod(n,4)
if( m .eq. 0 ) go to 40
do 30 i = 1,m
dy(i) = dy(i) + da*dx(i)
30 continue
if( n .lt. 4 ) return
40 mp1 = m + 1
do 50 i = mp1,n,4
dy(i) = dy(i) + da*dx(i)
dy(i + 1) = dy(i + 1) + da*dx(i + 1)
dy(i + 2) = dy(i + 2) + da*dx(i + 2)
dy(i + 3) = dy(i + 3) + da*dx(i + 3)
50 continue
return
end
double precision function dnrm2 ( n, dx, incx)
integer next
double precision dx(1), cutlo, cuthi, hitest, sum, xmax,zero,one
data zero, one /0.0d0, 1.0d0/
c
c euclidean norm of the n-vector stored in dx() with storage
c increment incx .
c if n .le. 0 return with result = 0.
c if n .ge. 1 then incx must be .ge. 1
c
c c.l.lawson, 1978 jan 08
c
c four phase method using two built-in constants that are
c hopefully applicable to all machines.
c cutlo = maximum of dsqrt(u/eps) over all known machines.
c cuthi = minimum of dsqrt(v) over all known machines.
c where
c eps = smallest no. such that eps + 1. .gt. 1.
c u = smallest positive no. (underflow limit)
c v = largest no. (overflow limit)
c
c brief outline of algorithm..
c
c phase 1 scans zero components.
c move to phase 2 when a component is nonzero and .le. cutlo
c move to phase 3 when a component is .gt. cutlo
c move to phase 4 when a component is .ge. cuthi/m
c where m = n for x() real and m = 2*n for complex.
c
c values for cutlo and cuthi..
c from the environmental parameters listed in the imsl converter
c document the limiting values are as follows..
c cutlo, s.p. u/eps = 2**(-102) for honeywell. close seconds are
c univac and dec at 2**(-103)
c thus cutlo = 2**(-51) = 4.44089e-16
c cuthi, s.p. v = 2**127 for univac, honeywell, and dec.
c thus cuthi = 2**(63.5) = 1.30438e19
c cutlo, d.p. u/eps = 2**(-67) for honeywell and dec.
c thus cutlo = 2**(-33.5) = 8.23181d-11
c cuthi, d.p. same as s.p. cuthi = 1.30438d19
c data cutlo, cuthi / 8.232d-11, 1.304d19 /
c data cutlo, cuthi / 4.441e-16, 1.304e19 /
data cutlo, cuthi / 8.232d-11, 1.304d19 /
c
if(n .gt. 0) go to 10
dnrm2 = zero
go to 300
c
10 assign 30 to next
sum = zero
nn = n * incx
c begin main loop
i = 1
20 go to next,(30, 50, 70, 110)
30 if( dabs(dx(i)) .gt. cutlo) go to 85
assign 50 to next
xmax = zero
c
c phase 1. sum is zero
c
50 if( dx(i) .eq. zero) go to 200
if( dabs(dx(i)) .gt. cutlo) go to 85
c
c prepare for phase 2.
assign 70 to next
go to 105
c
c prepare for phase 4.
c
100 i = j
assign 110 to next
sum = (sum / dx(i)) / dx(i)
105 xmax = dabs(dx(i))
go to 115
c
c phase 2. sum is small.
c scale to avoid destructive underflow.
c
70 if( dabs(dx(i)) .gt. cutlo ) go to 75
c
c common code for phases 2 and 4.
c in phase 4 sum is large. scale to avoid overflow.
c
110 if( dabs(dx(i)) .le. xmax ) go to 115
sum = one + sum * (xmax / dx(i))**2
xmax = dabs(dx(i))
go to 200
c
115 sum = sum + (dx(i)/xmax)**2
go to 200
c
c
c prepare for phase 3.
c
75 sum = (sum * xmax) * xmax
c
c
c for real or d.p. set hitest = cuthi/n
c for complex set hitest = cuthi/(2*n)
c
85 hitest = cuthi/float( n )
c
c phase 3. sum is mid-range. no scaling.
c
do 95 j =i,nn,incx
if(dabs(dx(j)) .ge. hitest) go to 100
95 sum = sum + dx(j)**2
dnrm2 = dsqrt( sum )
go to 300
c
200 continue
i = i + incx
if ( i .le. nn ) go to 20
c
c end of main loop.
c
c compute square root and adjust for scaling.
c
dnrm2 = xmax * dsqrt(sum)
300 continue
return
end
subroutine dscal(n,da,dx,incx)
c scales a vector by a constant.
c uses unrolled loops for increment equal to one.
c jack dongarra, linpack, 3/11/78.
c
double precision da,dx(1)
integer i,incx,m,mp1,n,nincx
c
if(n.le.0)return
if(incx.eq.1)go to 20
c
c code for increment not equal to 1
c
nincx = n*incx
do 10 i = 1,nincx,incx
dx(i) = da*dx(i)
10 continue
return
c
c code for increment equal to 1
c
c
c clean-up loop
c
20 m = mod(n,5)
if( m .eq. 0 ) go to 40
do 30 i = 1,m
dx(i) = da*dx(i)
30 continue
if( n .lt. 5 ) return
40 mp1 = m + 1
do 50 i = mp1,n,5
dx(i) = da*dx(i)
dx(i + 1) = da*dx(i + 1)
dx(i + 2) = da*dx(i + 2)
dx(i + 3) = da*dx(i + 3)
dx(i + 4) = da*dx(i + 4)
50 continue
return
end
subroutine dswap (n,dx,incx,dy,incy)
c
c interchanges two vectors.
c uses unrolled loops for increments equal one.
c jack dongarra, linpack, 3/11/78.
c
double precision dx(1),dy(1),dtemp
integer i,incx,incy,ix,iy,m,mp1,n
c
if(n.le.0)return
if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments not equal
c to 1
c
ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1
do 10 i = 1,n
dtemp = dx(ix)
dx(ix) = dy(iy)
dy(iy) = dtemp
ix = ix + incx
iy = iy + incy
10 continue
return
c
c code for both increments equal to 1
c
c
c clean-up loop
c
20 m = mod(n,3)
if( m .eq. 0 ) go to 40
do 30 i = 1,m
dtemp = dx(i)
dx(i) = dy(i)
dy(i) = dtemp
30 continue
if( n .lt. 3 ) return
40 mp1 = m + 1
do 50 i = mp1,n,3
dtemp = dx(i)
dx(i) = dy(i)
dy(i) = dtemp
dtemp = dx(i + 1)
dx(i + 1) = dy(i + 1)
dy(i + 1) = dtemp
dtemp = dx(i + 2)
dx(i + 2) = dy(i + 2)
dy(i + 2) = dtemp
50 continue
return
end
integer function idamax(n,dx,incx)
c
c finds the index of element having max. absolute value.
c jack dongarra, linpack, 3/11/78.
c
double precision dx(1),dmax
integer i,incx,ix,n
c
idamax = 0
if( n .lt. 1 ) return
idamax = 1
if(n.eq.1)return
if(incx.eq.1)go to 20
c
c code for increment not equal to 1
c
ix = 1
dmax = dabs(dx(1))
ix = ix + incx
do 10 i = 2,n
if(dabs(dx(ix)).le.dmax) go to 5
idamax = i
dmax = dabs(dx(ix))
5 ix = ix + incx
10 continue
return
c
c code for increment equal to 1
c
20 dmax = dabs(dx(1))
do 30 i = 2,n
if(dabs(dx(i)).le.dmax) go to 30
idamax = i
dmax = dabs(dx(i))
30 continue
return
end
c
subroutine drot (n,dx,incx,dy,incy,c,s)
c
c applies a plane rotation.
c jack dongarra, linpack, 3/11/78.
c
double precision dx(1),dy(1),dtemp,c,s
integer i,incx,incy,ix,iy,n
c
if(n.le.0)return
if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments not equal
c to 1
c
ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1
do 10 i = 1,n
dtemp = c*dx(ix) + s*dy(iy)
dy(iy) = c*dy(iy) - s*dx(ix)
dx(ix) = dtemp
ix = ix + incx
iy = iy + incy
10 continue
return
c
c code for both increments equal to 1
c
20 do 30 i = 1,n
dtemp = c*dx(i) + s*dy(i)
dy(i) = c*dy(i) - s*dx(i)
dx(i) = dtemp
30 continue
return
end
c
subroutine drotg(da,db,c,s)
c
c construct givens plane rotation.
c jack dongarra, linpack, 3/11/78.
c
double precision da,db,c,s,roe,scale,r,z
c
roe = db
if( dabs(da) .gt. dabs(db) ) roe = da
scale = dabs(da) + dabs(db)
if( scale .ne. 0.0d0 ) go to 10
c = 1.0d0
s = 0.0d0
r = 0.0d0
go to 20
10 r = scale*dsqrt((da/scale)**2 + (db/scale)**2)
r = dsign(1.0d0,roe)*r
c = da/r
s = db/r
20 z = 1.0d0
if( dabs(da) .gt. dabs(db) ) z = s
if( dabs(db) .ge. dabs(da) .and. c .ne. 0.0d0 ) z = 1.0d0/c
da = r
db = z
return
end
c
subroutine ccopy(n,cx,incx,cy,incy)
c
c copies a vector, x, to a vector, y.
c jack dongarra, linpack, 3/11/78.
c
complex cx(1),cy(1)
integer i,incx,incy,ix,iy,n
c
if(n.le.0)return
if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments
c not equal to 1
c
ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1
do 10 i = 1,n
cy(iy) = cx(ix)
ix = ix + incx
iy = iy + incy
10 continue
return
c
c code for both increments equal to 1
c
20 do 30 i = 1,n
cy(i) = cx(i)
30 continue
return
end
subroutine cscal(n,ca,cx,incx)
c
c scales a vector by a constant.
c jack dongarra, linpack, 3/11/78.
c
complex ca,cx(1)
integer i,incx,n,nincx
c
if(n.le.0)return
if(incx.eq.1)go to 20
c
c code for increment not equal to 1
c
nincx = n*incx
do 10 i = 1,nincx,incx
cx(i) = ca*cx(i)
10 continue
return
c
c code for increment equal to 1
c
20 do 30 i = 1,n
cx(i) = ca*cx(i)
30 continue
return
end
c
subroutine csrot (n,cx,incx,cy,incy,c,s)
c
c applies a plane rotation, where the cos and sin (c and s) are real
c and the vectors cx and cy are complex.
c jack dongarra, linpack, 3/11/78.
c
complex cx(1),cy(1),ctemp
real c,s
integer i,incx,incy,ix,iy,n
c
if(n.le.0)return
if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments not equal
c to 1
c
ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1
do 10 i = 1,n
ctemp = c*cx(ix) + s*cy(iy)
cy(iy) = c*cy(iy) - s*cx(ix)
cx(ix) = ctemp
ix = ix + incx
iy = iy + incy
10 continue
return
c
c code for both increments equal to 1
c
20 do 30 i = 1,n
ctemp = c*cx(i) + s*cy(i)
cy(i) = c*cy(i) - s*cx(i)
cx(i) = ctemp
30 continue
return
end
subroutine cswap (n,cx,incx,cy,incy)
c
c interchanges two vectors.
c jack dongarra, linpack, 3/11/78.
c
complex cx(1),cy(1),ctemp
integer i,incx,incy,ix,iy,n
c
if(n.le.0)return
if(incx.eq.1.and.incy.eq.1)go to 20
c
c code for unequal increments or equal increments not equal
c to 1
c
ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1
do 10 i = 1,n
ctemp = cx(ix)
cx(ix) = cy(iy)
cy(iy) = ctemp
ix = ix + incx
iy = iy + incy
10 continue
return
c
c code for both increments equal to 1
20 do 30 i = 1,n
ctemp = cx(i)
cx(i) = cy(i)
cy(i) = ctemp
30 continue
return
end
subroutine csscal(n,sa,cx,incx)
c
c scales a complex vector by a real constant.
c jack dongarra, linpack, 3/11/78.
c
complex cx(1)
real sa
integer i,incx,n,nincx
c
if(n.le.0)return
if(incx.eq.1)go to 20
c
c code for increment not equal to 1
c
nincx = n*incx
do 10 i = 1,nincx,incx
cx(i) = cmplx(sa*real(cx(i)),sa*aimag(cx(i)))
10 continue
return
c
c code for increment equal to 1
c
20 do 30 i = 1,n
cx(i) = cmplx(sa*real(cx(i)),sa*aimag(cx(i)))
30 continue
return
end
|