1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
|
c $Id: formats.f,v 1.1 2008-04-11 06:01:06 geuzaine Exp $
c----------------------------------------------------------------------c
c S P A R S K I T c
c----------------------------------------------------------------------c
c FORMAT CONVERSION MODULE c
c----------------------------------------------------------------------c
c contents: c
c---------- c
c csrdns : converts a row-stored sparse matrix into the dense format. c
c dnscsr : converts a dense matrix to a sparse storage format. c
c coocsr : converts coordinate to to csr format c
c coicsr : in-place conversion of coordinate to csr format c
c csrcoo : converts compressed sparse row to coordinate. c
c csrssr : converts compressed sparse row to symmetric sparse row c
c ssrcsr : converts symmetric sparse row to compressed sparse row c
c csrell : converts compressed sparse row to ellpack format c
c ellcsr : converts ellpack format to compressed sparse row format c
c csrmsr : converts compressed sparse row format to modified sparse c
c row format c
c msrcsr : converts modified sparse row format to compressed sparse c
c row format. c
c csrcsc : converts compressed sparse row format to compressed sparse c
c column format (transposition) c
c csrcsc2 : rectangular version of csrcsc c
c csrlnk : converts compressed sparse row to linked list format c
c lnkcsr : converts linked list format to compressed sparse row fmt c
c csrdia : converts a compressed sparse row format into a diagonal c
c format. c
c diacsr : converts a diagonal format into a compressed sparse row c
c format. c
c bsrcsr : converts a block-row sparse format into a compressed c
c sparse row format. c
c csrbsr : converts a compressed sparse row format into a block-row c
c sparse format. c
c csrbnd : converts a compressed sparse row format into a banded c
c format (linpack style). c
c bndcsr : converts a banded format (linpack style) into a compressed c
c sparse row storage. c
c csrssk : converts the compressed sparse row format to the symmetric c
c skyline format c
c sskssr : converts symmetric skyline format to symmetric sparse row c
c format. c
c csrjad : converts the csr format into the jagged diagonal format c
c jadcsr : converts the jagged-diagonal format into the csr format c
c csruss : Compressed Sparse Row to Unsymmetric Sparse Skyline c
c format c
c usscsr : Unsymmetric Sparse Skyline format to Compressed Sparse Row c
c csrsss : Compressed Sparse Row to Symmetric Sparse Skyline format c
c ssscsr : Symmetric Sparse Skyline format to Compressed Sparse Row c
c csrvbr : Converts compressed sparse row to var block row format c
c vbrcsr : Converts var block row to compressed sparse row format c
c csorted : Checks if matrix in CSR format is sorted by columns c
c--------- miscalleneous additions not involving the csr format--------c
c cooell : converts coordinate to Ellpack/Itpack format c
c dcsort : sorting routine used by crsjad c
c----------------------------------------------------------------------c
subroutine csrdns(nrow,ncol,a,ja,ia,dns,ndns,ierr)
real*8 dns(ndns,*),a(*)
integer ja(*),ia(*)
c-----------------------------------------------------------------------
c Compressed Sparse Row to Dense
c-----------------------------------------------------------------------
c
c converts a row-stored sparse matrix into a densely stored one
c
c On entry:
c----------
c
c nrow = row-dimension of a
c ncol = column dimension of a
c a,
c ja,
c ia = input matrix in compressed sparse row format.
c (a=value array, ja=column array, ia=pointer array)
c dns = array where to store dense matrix
c ndns = first dimension of array dns
c
c on return:
c-----------
c dns = the sparse matrix a, ja, ia has been stored in dns(ndns,*)
c
c ierr = integer error indicator.
c ierr .eq. 0 means normal return
c ierr .eq. i means that the code has stopped when processing
c row number i, because it found a column number .gt. ncol.
c
c-----------------------------------------------------------------------
ierr = 0
do 1 i=1, nrow
do 2 j=1,ncol
dns(i,j) = 0.0d0
2 continue
1 continue
c
do 4 i=1,nrow
do 3 k=ia(i),ia(i+1)-1
j = ja(k)
if (j .gt. ncol) then
ierr = i
return
endif
dns(i,j) = a(k)
3 continue
4 continue
return
c---- end of csrdns ----------------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine dnscsr(nrow,ncol,nzmax,dns,ndns,a,ja,ia,ierr)
real*8 dns(ndns,*),a(*)
integer ia(*),ja(*)
c-----------------------------------------------------------------------
c Dense to Compressed Row Sparse
c-----------------------------------------------------------------------
c
c converts a densely stored matrix into a row orientied
c compactly sparse matrix. ( reverse of csrdns )
c Note: this routine does not check whether an element
c is small. It considers that a(i,j) is zero if it is exactly
c equal to zero: see test below.
c-----------------------------------------------------------------------
c on entry:
c---------
c
c nrow = row-dimension of a
c ncol = column dimension of a
c nzmax = maximum number of nonzero elements allowed. This
c should be set to be the lengths of the arrays a and ja.
c dns = input nrow x ncol (dense) matrix.
c ndns = first dimension of dns.
c
c on return:
c----------
c
c a, ja, ia = value, column, pointer arrays for output matrix
c
c ierr = integer error indicator:
c ierr .eq. 0 means normal retur
c ierr .eq. i means that the the code stopped while
c processing row number i, because there was no space left in
c a, and ja (as defined by parameter nzmax).
c-----------------------------------------------------------------------
ierr = 0
next = 1
ia(1) = 1
do 4 i=1,nrow
do 3 j=1, ncol
if (dns(i,j) .eq. 0.0d0) goto 3
if (next .gt. nzmax) then
ierr = i
return
endif
ja(next) = j
a(next) = dns(i,j)
next = next+1
3 continue
ia(i+1) = next
4 continue
return
c---- end of dnscsr ----------------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine coocsr(nrow,nnz,a,ir,jc,ao,jao,iao)
c-----------------------------------------------------------------------
real*8 a(*),ao(*),x
integer ir(*),jc(*),jao(*),iao(*)
c-----------------------------------------------------------------------
c Coordinate to Compressed Sparse Row
c-----------------------------------------------------------------------
c converts a matrix that is stored in coordinate format
c a, ir, jc into a row general sparse ao, jao, iao format.
c
c on entry:
c---------
c nrow = dimension of the matrix
c nnz = number of nonzero elements in matrix
c a,
c ir,
c jc = matrix in coordinate format. a(k), ir(k), jc(k) store the nnz
c nonzero elements of the matrix with a(k) = actual real value of
c the elements, ir(k) = its row number and jc(k) = its column
c number. The order of the elements is arbitrary.
c
c on return:
c-----------
c ir is destroyed
c
c ao, jao, iao = matrix in general sparse matrix format with ao
c continung the real values, jao containing the column indices,
c and iao being the pointer to the beginning of the row,
c in arrays ao, jao.
c
c Notes:
c------ This routine is NOT in place. See coicsr
c
c------------------------------------------------------------------------
do 1 k=1,nrow+1
iao(k) = 0
1 continue
c determine row-lengths.
do 2 k=1, nnz
iao(ir(k)) = iao(ir(k))+1
2 continue
c starting position of each row..
k = 1
do 3 j=1,nrow+1
k0 = iao(j)
iao(j) = k
k = k+k0
3 continue
c go through the structure once more. Fill in output matrix.
do 4 k=1, nnz
i = ir(k)
j = jc(k)
x = a(k)
iad = iao(i)
ao(iad) = x
jao(iad) = j
iao(i) = iad+1
4 continue
c shift back iao
do 5 j=nrow,1,-1
iao(j+1) = iao(j)
5 continue
iao(1) = 1
return
c------------- end of coocsr -------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine coicsr (n,nnz,job,a,ja,ia,iwk)
integer ia(nnz),ja(nnz),iwk(n)
real*8 a(*)
c------------------------------------------------------------------------
c IN-PLACE coo-csr conversion routine.
c------------------------------------------------------------------------
c this subroutine converts a matrix stored in coordinate format into
c the csr format. The conversion is done in place in that the arrays
c a,ja,ia of the result are overwritten onto the original arrays.
c------------------------------------------------------------------------
c on entry:
c---------
c n = integer. row dimension of A.
c nnz = integer. number of nonzero elements in A.
c job = integer. Job indicator. when job=1, the real values in a are
c filled. Otherwise a is not touched and the structure of the
c array only (i.e. ja, ia) is obtained.
c a = real array of size nnz (number of nonzero elements in A)
c containing the nonzero elements
c ja = integer array of length nnz containing the column positions
c of the corresponding elements in a.
c ia = integer array of length nnz containing the row positions
c of the corresponding elements in a.
c iwk = integer work array of length n+1
c on return:
c----------
c a
c ja
c ia = contains the compressed sparse row data structure for the
c resulting matrix.
c Note:
c-------
c the entries of the output matrix are not sorted (the column
c indices in each are not in increasing order) use coocsr
c if you want them sorted.
c----------------------------------------------------------------------c
c Coded by Y. Saad, Sep. 26 1989 c
c----------------------------------------------------------------------c
real*8 t,tnext
logical values
c-----------------------------------------------------------------------
values = (job .eq. 1)
c find pointer array for resulting matrix.
do 35 i=1,n+1
iwk(i) = 0
35 continue
do 4 k=1,nnz
i = ia(k)
iwk(i+1) = iwk(i+1)+1
4 continue
c------------------------------------------------------------------------
iwk(1) = 1
do 44 i=2,n
iwk(i) = iwk(i-1) + iwk(i)
44 continue
c
c loop for a cycle in chasing process.
c
init = 1
k = 0
5 if (values) t = a(init)
i = ia(init)
j = ja(init)
ia(init) = -1
c------------------------------------------------------------------------
6 k = k+1
c current row number is i. determine where to go.
ipos = iwk(i)
c save the chased element.
if (values) tnext = a(ipos)
inext = ia(ipos)
jnext = ja(ipos)
c then occupy its location.
if (values) a(ipos) = t
ja(ipos) = j
c update pointer information for next element to come in row i.
iwk(i) = ipos+1
c determine next element to be chased,
if (ia(ipos) .lt. 0) goto 65
t = tnext
i = inext
j = jnext
ia(ipos) = -1
if (k .lt. nnz) goto 6
goto 70
65 init = init+1
if (init .gt. nnz) goto 70
if (ia(init) .lt. 0) goto 65
c restart chasing --
goto 5
70 do 80 i=1,n
ia(i+1) = iwk(i)
80 continue
ia(1) = 1
return
c----------------- end of coicsr ----------------------------------------
c------------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrcoo (nrow,job,nzmax,a,ja,ia,nnz,ao,ir,jc,ierr)
c-----------------------------------------------------------------------
real*8 a(*),ao(*)
integer ir(*),jc(*),ja(*),ia(nrow+1)
c-----------------------------------------------------------------------
c Compressed Sparse Row to Coordinate
c-----------------------------------------------------------------------
c converts a matrix that is stored in coordinate format
c a, ir, jc into a row general sparse ao, jao, iao format.
c
c on entry:
c---------
c nrow = dimension of the matrix.
c job = integer serving as a job indicator.
c if job = 1 fill in only the array ir, ignore jc, and ao.
c if job = 2 fill in ir, and jc but not ao
c if job = 3 fill in everything.
c The reason why these options are provided is that on return
c ao and jc are the same as a, ja. So when job = 3, a and ja are
c simply copied into ao, jc. When job=2, only jc and ir are
c returned. With job=1 only the array ir is returned. Moreover,
c the algorithm is in place:
c call csrcoo (nrow,1,nzmax,a,ja,ia,nnz,a,ia,ja,ierr)
c will write the output matrix in coordinate format on a, ja,ia.
c
c a,
c ja,
c ia = matrix in compressed sparse row format.
c nzmax = length of space available in ao, ir, jc.
c the code will stop immediatly if the number of
c nonzero elements found in input matrix exceeds nzmax.
c
c on return:
c-----------
c ao, ir, jc = matrix in coordinate format.
c
c nnz = number of nonzero elements in matrix.
c ierr = integer error indicator.
c ierr .eq. 0 means normal retur
c ierr .eq. 1 means that the the code stopped
c because there was no space in ao, ir, jc
c (according to the value of nzmax).
c
c NOTES: 1)This routine is PARTIALLY in place: csrcoo can be called with
c ao being the same array as as a, and jc the same array as ja.
c but ir CANNOT be the same as ia.
c 2) note the order in the output arrays,
c------------------------------------------------------------------------
ierr = 0
nnz = ia(nrow+1)-1
if (nnz .gt. nzmax) then
ierr = 1
return
endif
c------------------------------------------------------------------------
goto (3,2,1) job
1 do 10 k=1,nnz
ao(k) = a(k)
10 continue
2 do 11 k=1,nnz
jc(k) = ja(k)
11 continue
c
c copy backward to allow for in-place processing.
c
3 do 13 i=nrow,1,-1
k1 = ia(i+1)-1
k2 = ia(i)
do 12 k=k1,k2,-1
ir(k) = i
12 continue
13 continue
return
c------------- end-of-csrcoo -------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrssr (nrow,a,ja,ia,nzmax,ao,jao,iao,ierr)
real*8 a(*), ao(*), t
integer ia(*), ja(*), iao(*), jao(*)
c-----------------------------------------------------------------------
c Compressed Sparse Row to Symmetric Sparse Row
c-----------------------------------------------------------------------
c this subroutine extracts the lower triangular part of a matrix.
c It can used as a means for converting a symmetric matrix for
c which all the entries are stored in sparse format into one
c in which only the lower part is stored. The routine is in place in
c that the output matrix ao, jao, iao can be overwritten on
c the input matrix a, ja, ia if desired. Csrssr has been coded to
c put the diagonal elements of the matrix in the last position in
c each row (i.e. in position ao(ia(i+1)-1 of ao and jao)
c-----------------------------------------------------------------------
c On entry
c-----------
c nrow = dimension of the matrix a.
c a, ja,
c ia = matrix stored in compressed row sparse format
c
c nzmax = length of arrays ao, and jao.
c
c On return:
c-----------
c ao, jao,
c iao = lower part of input matrix (a,ja,ia) stored in compressed sparse
c row format format.
c
c ierr = integer error indicator.
c ierr .eq. 0 means normal return
c ierr .eq. i means that the code has stopped when processing
c row number i, because there is not enough space in ao, jao
c (according to the value of nzmax)
c
c-----------------------------------------------------------------------
ierr = 0
ko = 0
c-----------------------------------------------------------------------
do 7 i=1, nrow
kold = ko
kdiag = 0
do 71 k = ia(i), ia(i+1) -1
if (ja(k) .gt. i) goto 71
ko = ko+1
if (ko .gt. nzmax) then
ierr = i
return
endif
ao(ko) = a(k)
jao(ko) = ja(k)
if (ja(k) .eq. i) kdiag = ko
71 continue
if (kdiag .eq. 0 .or. kdiag .eq. ko) goto 72
c
c exchange
c
t = ao(kdiag)
ao(kdiag) = ao(ko)
ao(ko) = t
c
k = jao(kdiag)
jao(kdiag) = jao(ko)
jao(ko) = k
72 iao(i) = kold+1
7 continue
c redefine iao(n+1)
iao(nrow+1) = ko+1
return
c--------- end of csrssr -----------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine ssrcsr(job, value2, nrow, a, ja, ia, nzmax,
& ao, jao, iao, indu, iwk, ierr)
c .. Scalar Arguments ..
integer ierr, job, nrow, nzmax, value2
c ..
c .. Array Arguments ..
integer ia(nrow+1), iao(nrow+1), indu(nrow),
& iwk(nrow+1), ja(*), jao(nzmax)
real*8 a(*), ao(nzmax)
c ..
c-----------------------------------------------------------------------
c Symmetric Sparse Row to Compressed Sparse Row format
c-----------------------------------------------------------------------
c This subroutine converts a given matrix in SSR format to regular
c CSR format by computing Ao = A + A' - diag(A), where A' is A
c transpose.
c
c Typically this routine is used to expand the SSR matrix of
c Harwell Boeing matrices, or to obtain a symmetrized graph of
c unsymmetric matrices.
c
c This routine is inplace, i.e., (Ao,jao,iao) may be same as
c (a,ja,ia).
c
c It is possible to input an arbitrary CSR matrix to this routine,
c since there is no syntactical difference between CSR and SSR
c format. It also removes duplicate entries and perform a partial
c ordering. The output matrix has an order of lower half, main
c diagonal and upper half after the partial ordering.
c-----------------------------------------------------------------------
c on entry:
c---------
c
c job = options
c 0 -- duplicate entries are not removed. If the input matrix is
c SSR (not an arbitary CSR) matrix, no duplicate entry should
c arise from this routine.
c 1 -- eliminate duplicate entries, zero entries.
c 2 -- eliminate duplicate entries and perform partial ordering.
c 3 -- eliminate duplicate entries, sort the entries in the
c increasing order of clumn indices.
c
c value2= will the values of A be copied?
c 0 -- only expand the graph (a, ao are not touched)
c 1 -- expand the matrix with the values.
c
c nrow = column dimension of inout matrix
c a,
c ia,
c ja = matrix in compressed sparse row format.
c
c nzmax = size of arrays ao and jao. SSRCSR will abort if the storage
c provided in ao, jao is not sufficient to store A. See ierr.
c
c on return:
c----------
c ao, jao, iao
c = output matrix in compressed sparse row format. The resulting
c matrix is symmetric and is equal to A+A'-D. ao, jao, iao,
c can be the same as a, ja, ia in the calling sequence.
c
c indu = integer array of length nrow. INDU will contain pointers
c to the beginning of upper traigular part if job > 1.
c Otherwise it is also used as a work array (size nrow).
c
c iwk = integer work space (size nrow+1).
c
c ierr = integer. Serving as error message. If the length of the arrays
c ao, jao exceeds nzmax, ierr returns the minimum value
c needed for nzmax. otherwise ierr=0 (normal return).
c
c-----------------------------------------------------------------------
c .. Local Scalars ..
integer i, ipos, j, k, kfirst, klast, ko, kosav, nnz
real*8 tmp
c ..
c .. Executable Statements ..
ierr = 0
do 10 i = 1, nrow
indu(i) = 0
iwk(i) = 0
10 continue
iwk(nrow+1) = 0
c
c .. compute number of elements in each row of (A'-D)
c put result in iwk(i+1) for row i.
c
do 30 i = 1, nrow
do 20 k = ia(i), ia(i+1) - 1
j = ja(k)
if (j.ne.i)
& iwk(j+1) = iwk(j+1) + 1
20 continue
30 continue
c
c .. find addresses of first elements of ouput matrix. result in iwk
c
iwk(1) = 1
do 40 i = 1, nrow
indu(i) = iwk(i) + ia(i+1) - ia(i)
iwk(i+1) = iwk(i+1) + indu(i)
indu(i) = indu(i) - 1
40 continue
c.....Have we been given enough storage in ao, jao ?
nnz = iwk(nrow+1) - 1
if (nnz.gt.nzmax) then
ierr = nnz
return
endif
c
c .. copy the existing matrix (backwards).
c
kosav = iwk(nrow+1)
do 60 i = nrow, 1, -1
klast = ia(i+1) - 1
kfirst = ia(i)
iao(i+1) = kosav
kosav = iwk(i)
ko = iwk(i) - kfirst
iwk(i) = ko + klast + 1
do 50 k = klast, kfirst, -1
if (value2.ne.0)
& ao(k+ko) = a(k)
jao(k+ko) = ja(k)
50 continue
60 continue
iao(1) = 1
c
c now copy (A'-D). Go through the structure of ao, jao, iao
c that has already been copied. iwk(i) is the address
c of the next free location in row i for ao, jao.
c
do 80 i = 1, nrow
do 70 k = iao(i), indu(i)
j = jao(k)
if (j.ne.i) then
ipos = iwk(j)
if (value2.ne.0)
& ao(ipos) = ao(k)
jao(ipos) = i
iwk(j) = ipos + 1
endif
70 continue
80 continue
if (job.le.0) return
c
c .. eliminate duplicate entries --
c array INDU is used as marker for existing indices, it is also the
c location of the entry.
c IWK is used to stored the old IAO array.
c matrix is copied to squeeze out the space taken by the duplicated
c entries.
c
do 90 i = 1, nrow
indu(i) = 0
iwk(i) = iao(i)
90 continue
iwk(nrow+1) = iao(nrow+1)
k = 1
do 120 i = 1, nrow
iao(i) = k
ipos = iwk(i)
klast = iwk(i+1)
100 if (ipos.lt.klast) then
j = jao(ipos)
if (indu(j).eq.0) then
c .. new entry ..
if (value2.ne.0) then
if (ao(ipos) .ne. 0.0D0) then
indu(j) = k
jao(k) = jao(ipos)
ao(k) = ao(ipos)
k = k + 1
endif
else
indu(j) = k
jao(k) = jao(ipos)
k = k + 1
endif
else if (value2.ne.0) then
c .. duplicate entry ..
ao(indu(j)) = ao(indu(j)) + ao(ipos)
endif
ipos = ipos + 1
go to 100
endif
c .. remove marks before working on the next row ..
do 110 ipos = iao(i), k - 1
indu(jao(ipos)) = 0
110 continue
120 continue
iao(nrow+1) = k
if (job.le.1) return
c
c .. partial ordering ..
c split the matrix into strict upper/lower triangular
c parts, INDU points to the the beginning of the strict upper part.
c
do 140 i = 1, nrow
klast = iao(i+1) - 1
kfirst = iao(i)
130 if (klast.gt.kfirst) then
if (jao(klast).lt.i .and. jao(kfirst).ge.i) then
c .. swap klast with kfirst ..
j = jao(klast)
jao(klast) = jao(kfirst)
jao(kfirst) = j
if (value2.ne.0) then
tmp = ao(klast)
ao(klast) = ao(kfirst)
ao(kfirst) = tmp
endif
endif
if (jao(klast).ge.i)
& klast = klast - 1
if (jao(kfirst).lt.i)
& kfirst = kfirst + 1
go to 130
endif
c
if (jao(klast).lt.i) then
indu(i) = klast + 1
else
indu(i) = klast
endif
140 continue
if (job.le.2) return
c
c .. order the entries according to column indices
c bubble-sort is used
c
do 190 i = 1, nrow
do 160 ipos = iao(i), indu(i)-1
do 150 j = indu(i)-1, ipos+1, -1
k = j - 1
if (jao(k).gt.jao(j)) then
ko = jao(k)
jao(k) = jao(j)
jao(j) = ko
if (value2.ne.0) then
tmp = ao(k)
ao(k) = ao(j)
ao(j) = tmp
endif
endif
150 continue
160 continue
do 180 ipos = indu(i), iao(i+1)-1
do 170 j = iao(i+1)-1, ipos+1, -1
k = j - 1
if (jao(k).gt.jao(j)) then
ko = jao(k)
jao(k) = jao(j)
jao(j) = ko
if (value2.ne.0) then
tmp = ao(k)
ao(k) = ao(j)
ao(j) = tmp
endif
endif
170 continue
180 continue
190 continue
c
return
c---- end of ssrcsr ----------------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine xssrcsr (nrow,a,ja,ia,nzmax,ao,jao,iao,indu,ierr)
integer ia(nrow+1),iao(nrow+1),ja(*),jao(nzmax),indu(nrow+1)
real*8 a(*),ao(nzmax)
c-----------------------------------------------------------------------
c Symmetric Sparse Row to (regular) Compressed Sparse Row
c-----------------------------------------------------------------------
c this subroutine converts a symmetric matrix in which only the lower
c part is stored in compressed sparse row format, i.e.,
c a matrix stored in symmetric sparse format, into a fully stored matrix
c i.e., a matrix where both the lower and upper parts are stored in
c compressed sparse row format. the algorithm is in place (i.e. result
c may be overwritten onto the input matrix a, ja, ia ----- ).
c the output matrix delivered by ssrcsr is such that each row starts with
c the elements of the lower part followed by those of the upper part.
c-----------------------------------------------------------------------
c on entry:
c---------
c
c nrow = row dimension of inout matrix
c a,
c ia,
c ja = matrix in compressed sparse row format. This is assumed to be
c a lower triangular matrix.
c
c nzmax = size of arrays ao and jao. ssrcsr will abort if the storage
c provided in a, ja is not sufficient to store A. See ierr.
c
c on return:
c----------
c ao, iao,
c jao = output matrix in compressed sparse row format. The resulting
c matrix is symmetric and is equal to A+A**T - D, if
c A is the original lower triangular matrix. ao, jao, iao,
c can be the same as a, ja, ia in the calling sequence.
c
c indu = integer array of length nrow+1. If the input matrix is such
c that the last element in each row is its diagonal element then
c on return, indu will contain the pointers to the diagonal
c element in each row of the output matrix. Otherwise used as
c work array.
c ierr = integer. Serving as error message. If the length of the arrays
c ao, jao exceeds nzmax, ierr returns the minimum value
c needed for nzmax. otherwise ierr=0 (normal return).
c
c-----------------------------------------------------------------------
ierr = 0
do 1 i=1,nrow+1
indu(i) = 0
1 continue
c
c compute number of elements in each row of strict upper part.
c put result in indu(i+1) for row i.
c
do 3 i=1, nrow
do 2 k=ia(i),ia(i+1)-1
j = ja(k)
if (j .lt. i) indu(j+1) = indu(j+1)+1
2 continue
3 continue
c-----------
c find addresses of first elements of ouput matrix. result in indu
c-----------
indu(1) = 1
do 4 i=1,nrow
lenrow = ia(i+1)-ia(i)
indu(i+1) = indu(i) + indu(i+1) + lenrow
4 continue
c--------------------- enough storage in a, ja ? --------
nnz = indu(nrow+1)-1
if (nnz .gt. nzmax) then
ierr = nnz
return
endif
c
c now copy lower part (backwards).
c
kosav = indu(nrow+1)
do 6 i=nrow,1,-1
klast = ia(i+1)-1
kfirst = ia(i)
iao(i+1) = kosav
ko = indu(i)
kosav = ko
do 5 k = kfirst, klast
ao(ko) = a(k)
jao(ko) = ja(k)
ko = ko+1
5 continue
indu(i) = ko
6 continue
iao(1) = 1
c
c now copy upper part. Go through the structure of ao, jao, iao
c that has already been copied (lower part). indu(i) is the address
c of the next free location in row i for ao, jao.
c
do 8 i=1,nrow
c i-th row is now in ao, jao, iao structure -- lower half part
do 9 k=iao(i), iao(i+1)-1
j = jao(k)
if (j .ge. i) goto 8
ipos = indu(j)
ao(ipos) = ao(k)
jao(ipos) = i
indu(j) = indu(j) + 1
9 continue
8 continue
return
c----- end of xssrcsr --------------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrell (nrow,a,ja,ia,maxcol,coef,jcoef,ncoef,
* ndiag,ierr)
integer ia(nrow+1), ja(*), jcoef(ncoef,1)
real*8 a(*), coef(ncoef,1)
c-----------------------------------------------------------------------
c Compressed Sparse Row to Ellpack - Itpack format
c-----------------------------------------------------------------------
c this subroutine converts matrix stored in the general a, ja, ia
c format into the coef, jcoef itpack format.
c
c-----------------------------------------------------------------------
c on entry:
c----------
c nrow = row dimension of the matrix A.
c
c a,
c ia,
c ja = input matrix in compressed sparse row format.
c
c ncoef = first dimension of arrays coef, and jcoef.
c
c maxcol = integer equal to the number of columns available in coef.
c
c on return:
c----------
c coef = real array containing the values of the matrix A in
c itpack-ellpack format.
c jcoef = integer array containing the column indices of coef(i,j)
c in A.
c ndiag = number of active 'diagonals' found.
c
c ierr = error message. 0 = correct return. If ierr .ne. 0 on
c return this means that the number of diagonals found
c (ndiag) exceeds maxcol.
c
c-----------------------------------------------------------------------
c first determine the length of each row of lower-part-of(A)
ierr = 0
ndiag = 0
do 3 i=1, nrow
k = ia(i+1)-ia(i)
ndiag = max0(ndiag,k)
3 continue
c----- check whether sufficient columns are available. -----------------
if (ndiag .gt. maxcol) then
ierr = 1
return
endif
c
c fill coef with zero elements and jcoef with row numbers.------------
c
do 4 j=1,ndiag
do 41 i=1,nrow
coef(i,j) = 0.0d0
jcoef(i,j) = i
41 continue
4 continue
c
c------- copy elements row by row.--------------------------------------
c
do 6 i=1, nrow
k1 = ia(i)
k2 = ia(i+1)-1
do 5 k=k1,k2
coef(i,k-k1+1) = a(k)
jcoef(i,k-k1+1) = ja(k)
5 continue
6 continue
return
c--- end of csrell------------------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine ellcsr(nrow,coef,jcoef,ncoef,ndiag,a,ja,ia,nzmax,ierr)
integer ia(nrow+1), ja(*), jcoef(ncoef,1)
real*8 a(*), coef(ncoef,1)
c-----------------------------------------------------------------------
c Ellpack - Itpack format to Compressed Sparse Row
c-----------------------------------------------------------------------
c this subroutine converts a matrix stored in ellpack-itpack format
c coef-jcoef into the compressed sparse row format. It actually checks
c whether an entry in the input matrix is a nonzero element before
c putting it in the output matrix. The test does not account for small
c values but only for exact zeros.
c-----------------------------------------------------------------------
c on entry:
c----------
c
c nrow = row dimension of the matrix A.
c coef = array containing the values of the matrix A in ellpack format.
c jcoef = integer arraycontains the column indices of coef(i,j) in A.
c ncoef = first dimension of arrays coef, and jcoef.
c ndiag = number of active columns in coef, jcoef.
c
c ndiag = on entry the number of columns made available in coef.
c
c on return:
c----------
c a, ia,
c ja = matrix in a, ia, ja format where.
c
c nzmax = size of arrays a and ja. ellcsr will abort if the storage
c provided in a, ja is not sufficient to store A. See ierr.
c
c ierr = integer. serves are output error message.
c ierr = 0 means normal return.
c ierr = 1 means that there is not enough space in
c a and ja to store output matrix.
c-----------------------------------------------------------------------
c first determine the length of each row of lower-part-of(A)
ierr = 0
c-----check whether sufficient columns are available. -----------------
c
c------- copy elements row by row.--------------------------------------
kpos = 1
ia(1) = kpos
do 6 i=1, nrow
do 5 k=1,ndiag
if (coef(i,k) .ne. 0.0d0) then
if (kpos .gt. nzmax) then
ierr = kpos
return
endif
a(kpos) = coef(i,k)
ja(kpos) = jcoef(i,k)
kpos = kpos+1
endif
5 continue
ia(i+1) = kpos
6 continue
return
c--- end of ellcsr -----------------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrmsr (n,a,ja,ia,ao,jao,wk,iwk)
real*8 a(*),ao(*),wk(n)
integer ia(n+1),ja(*),jao(*),iwk(n+1)
c-----------------------------------------------------------------------
c Compressed Sparse Row to Modified - Sparse Row
c Sparse row with separate main diagonal
c-----------------------------------------------------------------------
c converts a general sparse matrix a, ja, ia into
c a compressed matrix using a separated diagonal (referred to as
c the bell-labs format as it is used by bell labs semi conductor
c group. We refer to it here as the modified sparse row format.
c Note: this has been coded in such a way that one can overwrite
c the output matrix onto the input matrix if desired by a call of
c the form
c
c call csrmsr (n, a, ja, ia, a, ja, wk,iwk)
c
c In case ao, jao, are different from a, ja, then one can
c use ao, jao as the work arrays in the calling sequence:
c
c call csrmsr (n, a, ja, ia, ao, jao, ao,jao)
c
c-----------------------------------------------------------------------
c
c on entry :
c---------
c a, ja, ia = matrix in csr format. note that the
c algorithm is in place: ao, jao can be the same
c as a, ja, in which case it will be overwritten on it
c upon return.
c
c on return :
c-----------
c
c ao, jao = sparse matrix in modified sparse row storage format:
c + ao(1:n) contains the diagonal of the matrix.
c + ao(n+2:nnz) contains the nondiagonal elements of the
c matrix, stored rowwise.
c + jao(n+2:nnz) : their column indices
c + jao(1:n+1) contains the pointer array for the nondiagonal
c elements in ao(n+1:nnz) and jao(n+2:nnz).
c i.e., for i .le. n+1 jao(i) points to beginning of row i
c in arrays ao, jao.
c here nnz = number of nonzero elements+1
c work arrays:
c------------
c wk = real work array of length n
c iwk = integer work array of length n+1
c
c notes:
c-------
c Algorithm is in place. i.e. both:
c
c call csrmsr (n, a, ja, ia, ao, jao, ao,jao)
c (in which ao, jao, are different from a, ja)
c and
c call csrmsr (n, a, ja, ia, a, ja, wk,iwk)
c (in which wk, jwk, are different from a, ja)
c are OK.
c--------
c coded by Y. Saad Sep. 1989. Rechecked Feb 27, 1990.
c-----------------------------------------------------------------------
icount = 0
c
c store away diagonal elements and count nonzero diagonal elements.
c
do 1 i=1,n
wk(i) = 0.0d0
iwk(i+1) = ia(i+1)-ia(i)
do 2 k=ia(i),ia(i+1)-1
if (ja(k) .eq. i) then
wk(i) = a(k)
icount = icount + 1
iwk(i+1) = iwk(i+1)-1
endif
2 continue
1 continue
c
c compute total length
c
iptr = n + ia(n+1) - icount
c
c copy backwards (to avoid collisions)
c
do 500 ii=n,1,-1
do 100 k=ia(ii+1)-1,ia(ii),-1
j = ja(k)
if (j .ne. ii) then
ao(iptr) = a(k)
jao(iptr) = j
iptr = iptr-1
endif
100 continue
500 continue
c
c compute pointer values and copy wk(*)
c
jao(1) = n+2
do 600 i=1,n
ao(i) = wk(i)
jao(i+1) = jao(i)+iwk(i+1)
600 continue
return
c------------ end of subroutine csrmsr ---------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine msrcsr (n,a,ja,ao,jao,iao,wk,iwk)
real*8 a(*),ao(*),wk(n)
integer ja(*),jao(*),iao(n+1),iwk(n+1)
c-----------------------------------------------------------------------
c Modified - Sparse Row to Compressed Sparse Row
c
c-----------------------------------------------------------------------
c converts a compressed matrix using a separated diagonal
c (modified sparse row format) in the Compressed Sparse Row
c format.
c does not check for zero elements in the diagonal.
c
c
c on entry :
c---------
c n = row dimension of matrix
c a, ja = sparse matrix in msr sparse storage format
c see routine csrmsr for details on data structure
c
c on return :
c-----------
c
c ao,jao,iao = output matrix in csr format.
c
c work arrays:
c------------
c wk = real work array of length n
c iwk = integer work array of length n+1
c
c notes:
c The original version of this was NOT in place, but has
c been modified by adding the vector iwk to be in place.
c The original version had ja instead of iwk everywhere in
c loop 500. Modified Sun 29 May 1994 by R. Bramley (Indiana).
c
c-----------------------------------------------------------------------
logical added
do 1 i=1,n
wk(i) = a(i)
iwk(i) = ja(i)
1 continue
iwk(n+1) = ja(n+1)
iao(1) = 1
iptr = 1
c---------
do 500 ii=1,n
added = .false.
idiag = iptr + (iwk(ii+1)-iwk(ii))
do 100 k=iwk(ii),iwk(ii+1)-1
j = ja(k)
if (j .lt. ii) then
ao(iptr) = a(k)
jao(iptr) = j
iptr = iptr+1
elseif (added) then
ao(iptr) = a(k)
jao(iptr) = j
iptr = iptr+1
else
c add diag element - only reserve a position for it.
idiag = iptr
iptr = iptr+1
added = .true.
c then other element
ao(iptr) = a(k)
jao(iptr) = j
iptr = iptr+1
endif
100 continue
ao(idiag) = wk(ii)
jao(idiag) = ii
if (.not. added) iptr = iptr+1
iao(ii+1) = iptr
500 continue
return
c------------ end of subroutine msrcsr ---------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrcsc (n,job,ipos,a,ja,ia,ao,jao,iao)
integer ia(n+1),iao(n+1),ja(*),jao(*)
real*8 a(*),ao(*)
c-----------------------------------------------------------------------
c Compressed Sparse Row to Compressed Sparse Column
c
c (transposition operation) Not in place.
c-----------------------------------------------------------------------
c -- not in place --
c this subroutine transposes a matrix stored in a, ja, ia format.
c ---------------
c on entry:
c----------
c n = dimension of A.
c job = integer to indicate whether to fill the values (job.eq.1) of the
c matrix ao or only the pattern., i.e.,ia, and ja (job .ne.1)
c
c ipos = starting position in ao, jao of the transposed matrix.
c the iao array takes this into account (thus iao(1) is set to ipos.)
c Note: this may be useful if one needs to append the data structure
c of the transpose to that of A. In this case use for example
c call csrcsc (n,1,ia(n+1),a,ja,ia,a,ja,ia(n+2))
c for any other normal usage, enter ipos=1.
c a = real array of length nnz (nnz=number of nonzero elements in input
c matrix) containing the nonzero elements.
c ja = integer array of length nnz containing the column positions
c of the corresponding elements in a.
c ia = integer of size n+1. ia(k) contains the position in a, ja of
c the beginning of the k-th row.
c
c on return:
c ----------
c output arguments:
c ao = real array of size nzz containing the "a" part of the transpose
c jao = integer array of size nnz containing the column indices.
c iao = integer array of size n+1 containing the "ia" index array of
c the transpose.
c
c-----------------------------------------------------------------------
call csrcsc2 (n,n,job,ipos,a,ja,ia,ao,jao,iao)
end
c-----------------------------------------------------------------------
subroutine csrcsc2 (n,n2,job,ipos,a,ja,ia,ao,jao,iao)
integer ia(n+1),iao(n2+1),ja(*),jao(*)
real*8 a(*),ao(*)
c-----------------------------------------------------------------------
c Compressed Sparse Row to Compressed Sparse Column
c
c (transposition operation) Not in place.
c-----------------------------------------------------------------------
c Rectangular version. n is number of rows of CSR matrix,
c n2 (input) is number of columns of CSC matrix.
c-----------------------------------------------------------------------
c -- not in place --
c this subroutine transposes a matrix stored in a, ja, ia format.
c ---------------
c on entry:
c----------
c n = number of rows of CSR matrix.
c n2 = number of columns of CSC matrix.
c job = integer to indicate whether to fill the values (job.eq.1) of the
c matrix ao or only the pattern., i.e.,ia, and ja (job .ne.1)
c
c ipos = starting position in ao, jao of the transposed matrix.
c the iao array takes this into account (thus iao(1) is set to ipos.)
c Note: this may be useful if one needs to append the data structure
c of the transpose to that of A. In this case use for example
c call csrcsc2 (n,n,1,ia(n+1),a,ja,ia,a,ja,ia(n+2))
c for any other normal usage, enter ipos=1.
c a = real array of length nnz (nnz=number of nonzero elements in input
c matrix) containing the nonzero elements.
c ja = integer array of length nnz containing the column positions
c of the corresponding elements in a.
c ia = integer of size n+1. ia(k) contains the position in a, ja of
c the beginning of the k-th row.
c
c on return:
c ----------
c output arguments:
c ao = real array of size nzz containing the "a" part of the transpose
c jao = integer array of size nnz containing the column indices.
c iao = integer array of size n+1 containing the "ia" index array of
c the transpose.
c
c-----------------------------------------------------------------------
c----------------- compute lengths of rows of transp(A) ----------------
do 1 i=1,n2+1
iao(i) = 0
1 continue
do 3 i=1, n
do 2 k=ia(i), ia(i+1)-1
j = ja(k)+1
iao(j) = iao(j)+1
2 continue
3 continue
c---------- compute pointers from lengths ------------------------------
iao(1) = ipos
do 4 i=1,n2
iao(i+1) = iao(i) + iao(i+1)
4 continue
c--------------- now do the actual copying -----------------------------
do 6 i=1,n
do 62 k=ia(i),ia(i+1)-1
j = ja(k)
next = iao(j)
if (job .eq. 1) ao(next) = a(k)
jao(next) = i
iao(j) = next+1
62 continue
6 continue
c-------------------------- reshift iao and leave ----------------------
do 7 i=n2,1,-1
iao(i+1) = iao(i)
7 continue
iao(1) = ipos
c--------------- end of csrcsc2 ----------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrlnk (n,a,ja,ia,link)
real*8 a(*)
integer n, ja(*), ia(n+1), link(*)
c-----------------------------------------------------------------------
c Compressed Sparse Row to Linked storage format.
c-----------------------------------------------------------------------
c this subroutine translates a matrix stored in compressed sparse
c row into one with a linked list storage format. Only the link
c array needs to be obtained since the arrays a, ja, and ia may
c be unchanged and carry the same meaning for the output matrix.
c in other words a, ja, ia, link is the output linked list data
c structure with a, ja, unchanged from input, and ia possibly
c altered (in case therea re null rows in matrix). Details on
c the output array link are given below.
c-----------------------------------------------------------------------
c Coded by Y. Saad, Feb 21, 1991.
c-----------------------------------------------------------------------
c
c on entry:
c----------
c n = integer equal to the dimension of A.
c
c a = real array of size nna containing the nonzero elements
c ja = integer array of size nnz containing the column positions
c of the corresponding elements in a.
c ia = integer of size n+1 containing the pointers to the beginning
c of each row. ia(k) contains the position in a, ja of the
c beginning of the k-th row.
c
c on return:
c----------
c a, ja, are not changed.
c ia may be changed if there are null rows.
c
c a = nonzero elements.
c ja = column positions.
c ia = ia(i) points to the first element of row i in linked structure.
c link = integer array of size containing the linked list information.
c link(k) points to the next element of the row after element
c a(k), ja(k). if link(k) = 0, then there is no next element,
c i.e., a(k), jcol(k) is the last element of the current row.
c
c Thus row number i can be accessed as follows:
c next = ia(i)
c while(next .ne. 0) do
c value = a(next) ! value a(i,j)
c jcol = ja(next) ! column index j
c next = link(next) ! address of next element in row
c endwhile
c notes:
c ------ ia may be altered on return.
c-----------------------------------------------------------------------
c local variables
integer i, k
c
c loop through all rows
c
do 100 i =1, n
istart = ia(i)
iend = ia(i+1)-1
if (iend .gt. istart) then
do 99 k=istart, iend-1
link(k) = k+1
99 continue
link(iend) = 0
else
ia(i) = 0
endif
100 continue
c
return
c-------------end-of-csrlnk --------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine lnkcsr (n, a, jcol, istart, link, ao, jao, iao)
real*8 a(*), ao(*)
integer n, jcol(*), istart(n), link(*), jao(*), iao(*)
c-----------------------------------------------------------------------
c Linked list storage format to Compressed Sparse Row format
c-----------------------------------------------------------------------
c this subroutine translates a matrix stored in linked list storage
c format into the compressed sparse row format.
c-----------------------------------------------------------------------
c Coded by Y. Saad, Feb 21, 1991.
c-----------------------------------------------------------------------
c
c on entry:
c----------
c n = integer equal to the dimension of A.
c
c a = real array of size nna containing the nonzero elements
c jcol = integer array of size nnz containing the column positions
c of the corresponding elements in a.
c istart= integer array of size n poiting to the beginning of the rows.
c istart(i) contains the position of the first element of
c row i in data structure. (a, jcol, link).
c if a row is empty istart(i) must be zero.
c link = integer array of size nnz containing the links in the linked
c list data structure. link(k) points to the next element
c of the row after element ao(k), jcol(k). if link(k) = 0,
c then there is no next element, i.e., ao(k), jcol(k) is
c the last element of the current row.
c
c on return:
c-----------
c ao, jao, iao = matrix stored in csr format:
c
c ao = real array containing the values of the nonzero elements of
c the matrix stored row-wise.
c jao = integer array of size nnz containing the column indices.
c iao = integer array of size n+1 containing the pointers array to the
c beginning of each row. iao(i) is the address in ao,jao of
c first element of row i.
c
c-----------------------------------------------------------------------
c first determine individial bandwidths and pointers.
c-----------------------------------------------------------------------
c local variables
integer irow, ipos, next
c-----------------------------------------------------------------------
ipos = 1
iao(1) = ipos
c
c loop through all rows
c
do 100 irow =1, n
c
c unroll i-th row.
c
next = istart(irow)
10 if (next .eq. 0) goto 99
jao(ipos) = jcol(next)
ao(ipos) = a(next)
ipos = ipos+1
next = link(next)
goto 10
99 iao(irow+1) = ipos
100 continue
c
return
c-------------end-of-lnkcsr -------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrdia (n,idiag,job,a,ja,ia,ndiag,
* diag,ioff,ao,jao,iao,ind)
real*8 diag(ndiag,idiag), a(*), ao(*)
integer ia(*), ind(*), ja(*), jao(*), iao(*), ioff(*)
c-----------------------------------------------------------------------
c Compressed sparse row to diagonal format
c-----------------------------------------------------------------------
c this subroutine extracts idiag diagonals from the input matrix a,
c a, ia, and puts the rest of the matrix in the output matrix ao,
c jao, iao. The diagonals to be extracted depend on the value of job
c (see below for details.) In the first case, the diagonals to be
c extracted are simply identified by their offsets provided in ioff
c by the caller. In the second case, the code internally determines
c the idiag most significant diagonals, i.e., those diagonals of the
c matrix which have the largest number of nonzero elements, and
c extracts them.
c-----------------------------------------------------------------------
c on entry:
c----------
c n = dimension of the matrix a.
c idiag = integer equal to the number of diagonals to be extracted.
c Note: on return idiag may be modified.
c a, ja,
c ia = matrix stored in a, ja, ia, format
c job = integer. serves as a job indicator. Job is better thought
c of as a two-digit number job=xy. If the first (x) digit
c is one on entry then the diagonals to be extracted are
c internally determined. In this case csrdia exctracts the
c idiag most important diagonals, i.e. those having the largest
c number on nonzero elements. If the first digit is zero
c then csrdia assumes that ioff(*) contains the offsets
c of the diagonals to be extracted. there is no verification
c that ioff(*) contains valid entries.
c The second (y) digit of job determines whether or not
c the remainder of the matrix is to be written on ao,jao,iao.
c If it is zero then ao, jao, iao is not filled, i.e.,
c the diagonals are found and put in array diag and the rest is
c is discarded. if it is one, ao, jao, iao contains matrix
c of the remaining elements.
c Thus:
c job= 0 means do not select diagonals internally (pick those
c defined by ioff) and do not fill ao,jao,iao
c job= 1 means do not select diagonals internally
c and fill ao,jao,iao
c job=10 means select diagonals internally
c and do not fill ao,jao,iao
c job=11 means select diagonals internally
c and fill ao,jao,iao
c
c ndiag = integer equal to the first dimension of array diag.
c
c on return:
c-----------
c
c idiag = number of diagonals found. This may be smaller than its value
c on entry.
c diag = real array of size (ndiag x idiag) containing the diagonals
c of A on return
c
c ioff = integer array of length idiag, containing the offsets of the
c diagonals to be extracted.
c ao, jao
c iao = remainder of the matrix in a, ja, ia format.
c work arrays:
c------------
c ind = integer array of length 2*n-1 used as integer work space.
c needed only when job.ge.10 i.e., in case the diagonals are to
c be selected internally.
c
c Notes:
c-------
c 1) The algorithm is in place: ao, jao, iao can be overwritten on
c a, ja, ia if desired
c 2) When the code is required to select the diagonals (job .ge. 10)
c the selection of the diagonals is done from left to right
c as a result if several diagonals have the same weight (number
c of nonzero elemnts) the leftmost one is selected first.
c-----------------------------------------------------------------------
job1 = job/10
job2 = job-job1*10
if (job1 .eq. 0) goto 50
n2 = n+n-1
call infdia(n,ja,ia,ind,idum)
c----------- determine diagonals to accept.----------------------------
c-----------------------------------------------------------------------
ii = 0
4 ii=ii+1
jmax = 0
do 41 k=1, n2
j = ind(k)
if (j .le. jmax) goto 41
i = k
jmax = j
41 continue
if (jmax .le. 0) then
ii = ii-1
goto 42
endif
ioff(ii) = i-n
ind(i) = - jmax
if (ii .lt. idiag) goto 4
42 idiag = ii
c---------------- initialize diago to zero -----------------------------
50 continue
do 55 j=1,idiag
do 54 i=1,n
diag(i,j) = 0.0d0
54 continue
55 continue
c-----------------------------------------------------------------------
ko = 1
c-----------------------------------------------------------------------
c extract diagonals and accumulate remaining matrix.
c-----------------------------------------------------------------------
do 6 i=1, n
do 51 k=ia(i),ia(i+1)-1
j = ja(k)
do 52 l=1,idiag
if (j-i .ne. ioff(l)) goto 52
diag(i,l) = a(k)
goto 51
52 continue
c--------------- append element not in any diagonal to ao,jao,iao -----
if (job2 .eq. 0) goto 51
ao(ko) = a(k)
jao(ko) = j
ko = ko+1
51 continue
if (job2 .ne. 0 ) ind(i+1) = ko
6 continue
if (job2 .eq. 0) return
c finish with iao
iao(1) = 1
do 7 i=2,n+1
iao(i) = ind(i)
7 continue
return
c----------- end of csrdia ---------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine diacsr (n,job,idiag,diag,ndiag,ioff,a,ja,ia)
real*8 diag(ndiag,idiag), a(*), t
integer ia(*), ja(*), ioff(*)
c-----------------------------------------------------------------------
c diagonal format to compressed sparse row
c-----------------------------------------------------------------------
c this subroutine extract the idiag most important diagonals from the
c input matrix a, ja, ia, i.e, those diagonals of the matrix which have
c the largest number of nonzero elements. If requested (see job),
c the rest of the matrix is put in a the output matrix ao, jao, iao
c-----------------------------------------------------------------------
c on entry:
c----------
c n = integer. dimension of the matrix a.
c job = integer. job indicator with the following meaning.
c if (job .eq. 0) then check for each entry in diag
c whether this entry is zero. If it is then do not include
c in the output matrix. Note that the test is a test for
c an exact arithmetic zero. Be sure that the zeros are
c actual zeros in double precision otherwise this would not
c work.
c
c idiag = integer equal to the number of diagonals to be extracted.
c Note: on return idiag may be modified.
c
c diag = real array of size (ndiag x idiag) containing the diagonals
c of A on return.
c
c ndiag = integer equal to the first dimension of array diag.
c
c ioff = integer array of length idiag, containing the offsets of the
c diagonals to be extracted.
c
c on return:
c-----------
c a,
c ja,
c ia = matrix stored in a, ja, ia, format
c
c Note:
c ----- the arrays a and ja should be of length n*idiag.
c
c-----------------------------------------------------------------------
ia(1) = 1
ko = 1
do 80 i=1, n
do 70 jj = 1, idiag
j = i+ioff(jj)
if (j .lt. 1 .or. j .gt. n) goto 70
t = diag(i,jj)
if (job .eq. 0 .and. t .eq. 0.0d0) goto 70
a(ko) = t
ja(ko) = j
ko = ko+1
70 continue
ia(i+1) = ko
80 continue
return
c----------- end of diacsr ---------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine bsrcsr (job, n, m, na, a, ja, ia, ao, jao, iao)
implicit none
integer job, n, m, na, ia(*), ja(*), jao(*), iao(n+1)
real*8 a(na,*), ao(*)
c-----------------------------------------------------------------------
c Block Sparse Row to Compressed Sparse Row.
c-----------------------------------------------------------------------
c NOTE: ** meanings of parameters may have changed wrt earlier versions
c FORMAT DEFINITION HAS CHANGED WRT TO EARLIER VERSIONS...
c-----------------------------------------------------------------------
c
c converts a matrix stored in block-reduced a, ja, ia format to the
c general sparse row a, ja, ia format. A matrix that has a block
c structure is a matrix whose entries are blocks of the same size m
c (e.g. 3 x 3). Then it is often preferred to work with the reduced
c graph of the matrix. Instead of storing one element at a time one can
c store a whole block at a time. In this storage scheme an entry is a
c square array holding the m**2 elements of a block.
c
c-----------------------------------------------------------------------
c on entry:
c----------
c job = if job.eq.0 on entry, values are not copied (pattern only)
c
c n = the block row dimension of the matrix.
c
c m = the dimension of each block. Thus, the actual row dimension
c of A is n x m.
c
c na = first dimension of array a as declared in calling program.
c This should be .ge. m**2.
c
c a = real array containing the real entries of the matrix. Recall
c that each entry is in fact an m x m block. These entries
c are stored column-wise in locations a(1:m*m,k) for each k-th
c entry. See details below.
c
c ja = integer array of length n. ja(k) contains the column index
c of the leading element, i.e., the element (1,1) of the block
c that is held in the column a(*,k) of the value array.
c
c ia = integer array of length n+1. ia(i) points to the beginning
c of block row number i in the arrays a and ja.
c
c on return:
c-----------
c ao, jao,
c iao = matrix stored in compressed sparse row format. The number of
c rows in the new matrix is n x m.
c
c Notes: THIS CODE IS NOT IN PLACE.
c
c-----------------------------------------------------------------------
c BSR FORMAT.
c----------
c Each row of A contains the m x m block matrix unpacked column-
c wise (this allows the user to declare the array a as a(m,m,*) on entry
c if desired). The block rows are stored in sequence just as for the
c compressed sparse row format.
c
c-----------------------------------------------------------------------
c example with m = 2:
c 1 2 3
c +-------|--------|--------+ +-------+
c | 1 2 | 0 0 | 3 4 | Block | x 0 x | 1
c | 5 6 | 0 0 | 7 8 | Representation: | 0 x x | 2
c +-------+--------+--------+ | x 0 0 | 3
c | 0 0 | 9 10 | 11 12 | +-------+
c | 0 0 | 13 14 | 15 16 |
c +-------+--------+--------+
c | 17 18 | 0 0 | 0 0 |
c | 22 23 | 0 0 | 0 0 |
c +-------+--------+--------+
c
c For this matrix: n = 3
c m = 2
c nnz = 5
c-----------------------------------------------------------------------
c Data structure in Block Sparse Row format:
c-------------------------------------------
c Array A:
c-------------------------
c 1 3 9 11 17 <<--each m x m block is stored column-wise
c 5 7 13 15 22 in a column of the array A.
c 2 4 10 12 18
c 6 8 14 16 23
c-------------------------
c JA 1 3 2 3 1 <<-- column indices for each block. Note that
c------------------------- these indices are wrt block matrix.
c IA 1 3 5 6 <<-- pointers to beginning of each block row
c------------------------- in arrays A and JA.
c-----------------------------------------------------------------------
c locals
c
integer i, i1, i2, ij, ii, irow, j, jstart, k, krow, no
logical val
c
val = (job.ne.0)
no = n * m
irow = 1
krow = 1
iao(irow) = 1
c-----------------------------------------------------------------------
do 2 ii=1, n
c
c recall: n is the block-row dimension
c
i1 = ia(ii)
i2 = ia(ii+1)-1
c
c create m rows for each block row -- i.e., each k.
c
do 23 i=1,m
do 21 k=i1, i2
jstart = m*(ja(k)-1)
do 22 j=1,m
ij = (j-1)*m + i
if (val) ao(krow) = a(ij,k)
jao(krow) = jstart+j
krow = krow+1
22 continue
21 continue
irow = irow+1
iao(irow) = krow
23 continue
2 continue
return
c-------------end-of-bsrcsr --------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrbsr (job,nrow,m,na,a,ja,ia,ao,jao,iao,iw,ierr)
implicit none
integer job,ierr,nrow,m,na,ia(nrow+1),ja(*),jao(na),iao(*),iw(*)
real*8 a(*),ao(na,*)
c-----------------------------------------------------------------------
c Compressed Sparse Row to Block Sparse Row
c-----------------------------------------------------------------------
c
c This subroutine converts a matrix stored in a general compressed a,
c ja, ia format into a a block sparse row format a(m,m,*),ja(*),ia(*).
c See routine bsrcsr for more details on data structure for block
c matrices.
c
c NOTES: 1) the initial matrix does not have to have a block structure.
c zero padding is done for general sparse matrices.
c 2) For most practical purposes, na should be the same as m*m.
c
c-----------------------------------------------------------------------
c
c In what follows nr=1+(nrow-1)/m = block-row dimension of output matrix
c
c on entry:
c----------
c
c job = job indicator.
c job = 0 -> only the pattern of output matrix is generated
c job > 0 -> both pattern and values are generated.
c job = -1 -> iao(1) will return the number of nonzero blocks,
c in the output matrix. In this case jao(1:nr) is used as
c workspace, ao is untouched, iao is untouched except iao(1)
c
c nrow = integer, the actual row dimension of the matrix.
c
c m = integer equal to the dimension of each block. m should be > 0.
c
c na = first dimension of array ao as declared in calling program.
c na should be .ge. m*m.
c
c a, ja,
c ia = input matrix stored in compressed sparse row format.
c
c on return:
c-----------
c
c ao = real array containing the values of the matrix. For details
c on the format see below. Each row of a contains the m x m
c block matrix unpacked column-wise (this allows the user to
c declare the array a as ao(m,m,*) on entry if desired). The
c block rows are stored in sequence just as for the compressed
c sparse row format. The block dimension of the output matrix
c is nr = 1 + (nrow-1) / m.
c
c jao = integer array. containing the block-column indices of the
c block-matrix. Each jao(k) is an integer between 1 and nr
c containing the block column index of the block ao(*,k).
c
c iao = integer array of length nr+1. iao(i) points to the beginning
c of block row number i in the arrays ao and jao. When job=-1
c iao(1) contains the number of nonzero blocks of the output
c matrix and the rest of iao is unused. This is useful for
c determining the lengths of ao and jao.
c
c ierr = integer, error code.
c 0 -- normal termination
c 1 -- m is equal to zero
c 2 -- NA too small to hold the blocks (should be .ge. m**2)
c
c Work arrays:
c-------------
c iw = integer work array of dimension nr = 1 + (nrow-1) / m
c
c NOTES:
c-------
c 1) this code is not in place.
c 2) see routine bsrcsr for details on data sctructure for block
c sparse row format.
c
c-----------------------------------------------------------------------
c nr is the block-dimension of the output matrix.
c
integer nr, m2, io, ko, ii, len, k, jpos, j, i, ij, jr, irow
logical vals
c-----
ierr = 0
if (m*m .gt. na) ierr = 2
if (m .eq. 0) ierr = 1
if (ierr .ne. 0) return
c-----------------------------------------------------------------------
vals = (job .gt. 0)
nr = 1 + (nrow-1) / m
m2 = m*m
ko = 1
io = 1
iao(io) = 1
len = 0
c
c iw determines structure of block-row (nonzero indicator)
c
do j=1, nr
iw(j) = 0
enddo
c
c big loop -- leap by m rows each time.
c
do ii=1, nrow, m
irow = 0
c
c go through next m rows -- make sure not to go beyond nrow.
c
do while (ii+irow .le. nrow .and. irow .le. m-1)
do k=ia(ii+irow),ia(ii+irow+1)-1
c
c block column index = (scalar column index -1) / m + 1
c
j = ja(k)-1
jr = j/m + 1
j = j - (jr-1)*m
jpos = iw(jr)
if (jpos .eq. 0) then
c
c create a new block
c
iw(jr) = ko
jao(ko) = jr
if (vals) then
c
c initialize new block to zero -- then copy nonzero element
c
do i=1, m2
ao(i,ko) = 0.0d0
enddo
ij = j*m + irow + 1
ao(ij,ko) = a(k)
endif
ko = ko+1
else
c
c copy column index and nonzero element
c
jao(jpos) = jr
ij = j*m + irow + 1
if (vals) ao(ij,jpos) = a(k)
endif
enddo
irow = irow+1
enddo
c
c refresh iw
c
do j = iao(io),ko-1
iw(jao(j)) = 0
enddo
if (job .eq. -1) then
len = len + ko-1
ko = 1
else
io = io+1
iao(io) = ko
endif
enddo
if (job .eq. -1) iao(1) = len
c
return
c--------------end-of-csrbsr--------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrbnd (n,a,ja,ia,job,abd,nabd,lowd,ml,mu,ierr)
real*8 a(*),abd(nabd,n)
integer ia(n+1),ja(*)
c-----------------------------------------------------------------------
c Compressed Sparse Row to Banded (Linpack ) format.
c-----------------------------------------------------------------------
c this subroutine converts a general sparse matrix stored in
c compressed sparse row format into the banded format. for the
c banded format,the Linpack conventions are assumed (see below).
c-----------------------------------------------------------------------
c on entry:
c----------
c n = integer,the actual row dimension of the matrix.
c
c a,
c ja,
c ia = input matrix stored in compressed sparse row format.
c
c job = integer. if job=1 then the values of the lower bandwith ml
c and the upper bandwidth mu are determined internally.
c otherwise it is assumed that the values of ml and mu
c are the correct bandwidths on input. See ml and mu below.
c
c nabd = integer. first dimension of array abd.
c
c lowd = integer. this should be set to the row number in abd where
c the lowest diagonal (leftmost) of A is located.
c lowd should be ( 1 .le. lowd .le. nabd).
c if it is not known in advance what lowd should be
c enter lowd = 0 and the default value lowd = ml+mu+1
c will be chosen. Alternative: call routine getbwd from unary
c first to detrermione ml and mu then define lowd accordingly.
c (Note: the banded solvers in linpack use lowd=2*ml+mu+1. )
c
c ml = integer. equal to the bandwidth of the strict lower part of A
c mu = integer. equal to the bandwidth of the strict upper part of A
c thus the total bandwidth of A is ml+mu+1.
c if ml+mu+1 is found to be larger than lowd then an error
c flag is raised (unless lowd = 0). see ierr.
c
c note: ml and mu are assumed to have the correct bandwidth values
c as defined above if job is set to zero on entry.
c
c on return:
c-----------
c
c abd = real array of dimension abd(nabd,n).
c on return contains the values of the matrix stored in
c banded form. The j-th column of abd contains the elements
c of the j-th column of the original matrix comprised in the
c band ( i in (j-ml,j+mu) ) with the lowest diagonal at
c the bottom row (row lowd). See details below for this format.
c
c ml = integer. equal to the bandwidth of the strict lower part of A
c mu = integer. equal to the bandwidth of the strict upper part of A
c if job=1 on entry then these two values are internally computed.
c
c lowd = integer. row number in abd where the lowest diagonal
c (leftmost) of A is located on return. In case lowd = 0
c on return, then it is defined to ml+mu+1 on return and the
c lowd will contain this value on return. `
c
c ierr = integer. used for error messages. On return:
c ierr .eq. 0 :means normal return
c ierr .eq. -1 : means invalid value for lowd. (either .lt. 0
c or larger than nabd).
c ierr .eq. -2 : means that lowd is not large enough and as
c result the matrix cannot be stored in array abd.
c lowd should be at least ml+mu+1, where ml and mu are as
c provided on output.
c
c----------------------------------------------------------------------*
c Additional details on banded format. (this closely follows the *
c format used in linpack. may be useful for converting a matrix into *
c this storage format in order to use the linpack banded solvers). *
c----------------------------------------------------------------------*
c --- band storage format for matrix abd --- *
c uses ml+mu+1 rows of abd(nabd,*) to store the diagonals of *
c a in rows of abd starting from the lowest (sub)-diagonal which is *
c stored in row number lowd of abd. the minimum number of rows needed *
c in abd is ml+mu+1, i.e., the minimum value for lowd is ml+mu+1. the *
c j-th column of abd contains the elements of the j-th column of a, *
c from bottom to top: the element a(j+ml,j) is stored in position *
c abd(lowd,j), then a(j+ml-1,j) in position abd(lowd-1,j) and so on. *
c Generally, the element a(j+k,j) of original matrix a is stored in *
c position abd(lowd+k-ml,j), for k=ml,ml-1,..,0,-1, -mu. *
c The first dimension nabd of abd must be .ge. lowd *
c *
c example [from linpack ]: if the original matrix is *
c *
c 11 12 13 0 0 0 *
c 21 22 23 24 0 0 *
c 0 32 33 34 35 0 original banded matrix *
c 0 0 43 44 45 46 *
c 0 0 0 54 55 56 *
c 0 0 0 0 65 66 *
c *
c then n = 6, ml = 1, mu = 2. lowd should be .ge. 4 (=ml+mu+1) and *
c if lowd = 5 for example, abd should be: *
c *
c untouched --> x x x x x x *
c * * 13 24 35 46 *
c * 12 23 34 45 56 resulting abd matrix in banded *
c 11 22 33 44 55 66 format *
c row lowd--> 21 32 43 54 65 * *
c *
c * = not used *
c
*
c----------------------------------------------------------------------*
c first determine ml and mu.
c-----------------------------------------------------------------------
ierr = 0
c-----------
if (job .eq. 1) call getbwd(n,a,ja,ia,ml,mu)
m = ml+mu+1
if (lowd .eq. 0) lowd = m
if (m .gt. lowd) ierr = -2
if (lowd .gt. nabd .or. lowd .lt. 0) ierr = -1
if (ierr .lt. 0) return
c------------
do 15 i=1,m
ii = lowd -i+1
do 10 j=1,n
abd(ii,j) = 0.0d0
10 continue
15 continue
c---------------------------------------------------------------------
mdiag = lowd-ml
do 30 i=1,n
do 20 k=ia(i),ia(i+1)-1
j = ja(k)
abd(i-j+mdiag,j) = a(k)
20 continue
30 continue
return
c------------- end of csrbnd -------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine bndcsr (n,abd,nabd,lowd,ml,mu,a,ja,ia,len,ierr)
real*8 a(*),abd(nabd,*), t
integer ia(n+1),ja(*)
c-----------------------------------------------------------------------
c Banded (Linpack ) format to Compressed Sparse Row format.
c-----------------------------------------------------------------------
c on entry:
c----------
c n = integer,the actual row dimension of the matrix.
c
c nabd = first dimension of array abd.
c
c abd = real array containing the values of the matrix stored in
c banded form. The j-th column of abd contains the elements
c of the j-th column of the original matrix,comprised in the
c band ( i in (j-ml,j+mu) ) with the lowest diagonal located
c in row lowd (see below).
c
c lowd = integer. this should be set to the row number in abd where
c the lowest diagonal (leftmost) of A is located.
c lowd should be s.t. ( 1 .le. lowd .le. nabd).
c The subroutines dgbco, ... of linpack use lowd=2*ml+mu+1.
c
c ml = integer. equal to the bandwidth of the strict lower part of A
c mu = integer. equal to the bandwidth of the strict upper part of A
c thus the total bandwidth of A is ml+mu+1.
c if ml+mu+1 is found to be larger than nabd then an error
c message is set. see ierr.
c
c len = integer. length of arrays a and ja. bndcsr will stop if the
c length of the arrays a and ja is insufficient to store the
c matrix. see ierr.
c
c on return:
c-----------
c a,
c ja,
c ia = input matrix stored in compressed sparse row format.
c
c lowd = if on entry lowd was zero then lowd is reset to the default
c value ml+mu+l.
c
c ierr = integer. used for error message output.
c ierr .eq. 0 :means normal return
c ierr .eq. -1 : means invalid value for lowd.
c ierr .gt. 0 : means that there was not enough storage in a and ja
c for storing the ourput matrix. The process ran out of space
c (as indicated by len) while trying to fill row number ierr.
c This should give an idea of much more storage might be required.
c Moreover, the first irow-1 rows are correctly filled.
c
c notes: the values in abd found to be equal to zero
c ----- (actual test: if (abd(...) .eq. 0.0d0) are removed.
c The resulting may not be identical to a csr matrix
c originally transformed to a bnd format.
c
c-----------------------------------------------------------------------
ierr = 0
c-----------
if (lowd .gt. nabd .or. lowd .le. 0) then
ierr = -1
return
endif
c-----------
ko = 1
ia(1) = 1
do 30 irow=1,n
c-----------------------------------------------------------------------
i = lowd
do 20 j=irow-ml,irow+mu
if (j .le. 0 ) goto 19
if (j .gt. n) goto 21
t = abd(i,j)
if (t .eq. 0.0d0) goto 19
if (ko .gt. len) then
ierr = irow
return
endif
a(ko) = t
ja(ko) = j
ko = ko+1
19 i = i-1
20 continue
c end for row irow
21 ia(irow+1) = ko
30 continue
return
c------------- end of bndcsr -------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrssk (n,imod,a,ja,ia,asky,isky,nzmax,ierr)
real*8 a(*),asky(nzmax)
integer n, imod, nzmax, ierr, ia(n+1), isky(n+1), ja(*)
c-----------------------------------------------------------------------
c Compressed Sparse Row to Symmetric Skyline Format
c or Symmetric Sparse Row
c-----------------------------------------------------------------------
c this subroutine translates a compressed sparse row or a symmetric
c sparse row format into a symmetric skyline format.
c the input matrix can be in either compressed sparse row or the
c symmetric sparse row format. The output matrix is in a symmetric
c skyline format: a real array containing the (active portions) of the
c rows in sequence and a pointer to the beginning of each row.
c
c This module is NOT in place.
c-----------------------------------------------------------------------
c Coded by Y. Saad, Oct 5, 1989. Revised Feb. 18, 1991.
c-----------------------------------------------------------------------
c
c on entry:
c----------
c n = integer equal to the dimension of A.
c imod = integer indicating the variant of skyline format wanted:
c imod = 0 means the pointer isky points to the `zeroth'
c element of the row, i.e., to the position of the diagonal
c element of previous row (for i=1, isky(1)= 0)
c imod = 1 means that itpr points to the beginning of the row.
c imod = 2 means that isky points to the end of the row (diagonal
c element)
c
c a = real array of size nna containing the nonzero elements
c ja = integer array of size nnz containing the column positions
c of the corresponding elements in a.
c ia = integer of size n+1. ia(k) contains the position in a, ja of
c the beginning of the k-th row.
c nzmax = integer. must be set to the number of available locations
c in the output array asky.
c
c on return:
c----------
c
c asky = real array containing the values of the matrix stored in skyline
c format. asky contains the sequence of active rows from
c i=1, to n, an active row being the row of elemnts of
c the matrix contained between the leftmost nonzero element
c and the diagonal element.
c isky = integer array of size n+1 containing the pointer array to
c each row. The meaning of isky depends on the input value of
c imod (see above).
c ierr = integer. Error message. If the length of the
c output array asky exceeds nzmax. ierr returns the minimum value
c needed for nzmax. otherwise ierr=0 (normal return).
c
c Notes:
c 1) This module is NOT in place.
c 2) even when imod = 2, length of isky is n+1, not n.
c
c-----------------------------------------------------------------------
c first determine individial bandwidths and pointers.
c-----------------------------------------------------------------------
ierr = 0
isky(1) = 0
do 3 i=1,n
ml = 0
do 31 k=ia(i),ia(i+1)-1
ml = max(ml,i-ja(k)+1)
31 continue
isky(i+1) = isky(i)+ml
3 continue
c
c test if there is enough space asky to do the copying.
c
nnz = isky(n+1)
if (nnz .gt. nzmax) then
ierr = nnz
return
endif
c
c fill asky with zeros.
c
do 1 k=1, nnz
asky(k) = 0.0d0
1 continue
c
c copy nonzero elements.
c
do 4 i=1,n
kend = isky(i+1)
do 41 k=ia(i),ia(i+1)-1
j = ja(k)
if (j .le. i) asky(kend+j-i) = a(k)
41 continue
4 continue
c
c modify pointer according to imod if necessary.
c
if (imod .eq. 0) return
if (imod .eq. 1) then
do 50 k=1, n+1
isky(k) = isky(k)+1
50 continue
endif
if (imod .eq. 2) then
do 60 k=1, n
isky(k) = isky(k+1)
60 continue
endif
c
return
c------------- end of csrssk -------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine sskssr (n,imod,asky,isky,ao,jao,iao,nzmax,ierr)
real*8 asky(*),ao(nzmax)
integer n, imod,nzmax,ierr, isky(n+1),iao(n+1),jao(nzmax)
c-----------------------------------------------------------------------
c Symmetric Skyline Format to Symmetric Sparse Row format.
c-----------------------------------------------------------------------
c tests for exact zeros in skyline matrix (and ignores them in
c output matrix). In place routine (a, isky :: ao, iao)
c-----------------------------------------------------------------------
c this subroutine translates a symmetric skyline format into a
c symmetric sparse row format. Each element is tested to see if it is
c a zero element. Only the actual nonzero elements are retained. Note
c that the test used is simple and does take into account the smallness
c of a value. the subroutine filter (see unary module) can be used
c for this purpose.
c-----------------------------------------------------------------------
c Coded by Y. Saad, Oct 5, 1989. Revised Feb 18, 1991./
c-----------------------------------------------------------------------
c
c on entry:
c----------
c n = integer equal to the dimension of A.
c imod = integer indicating the variant of skyline format used:
c imod = 0 means the pointer iao points to the `zeroth'
c element of the row, i.e., to the position of the diagonal
c element of previous row (for i=1, iao(1)= 0)
c imod = 1 means that itpr points to the beginning of the row.
c imod = 2 means that iao points to the end of the row
c (diagonal element)
c asky = real array containing the values of the matrix. asky contains
c the sequence of active rows from i=1, to n, an active row
c being the row of elemnts of the matrix contained between the
c leftmost nonzero element and the diagonal element.
c isky = integer array of size n+1 containing the pointer array to
c each row. isky (k) contains the address of the beginning of the
c k-th active row in the array asky.
c nzmax = integer. equal to the number of available locations in the
c output array ao.
c
c on return:
c ----------
c ao = real array of size nna containing the nonzero elements
c jao = integer array of size nnz containing the column positions
c of the corresponding elements in a.
c iao = integer of size n+1. iao(k) contains the position in a, ja of
c the beginning of the k-th row.
c ierr = integer. Serving as error message. If the length of the
c output arrays ao, jao exceeds nzmax then ierr returns
c the row number where the algorithm stopped: rows
c i, to ierr-1 have been processed succesfully.
c ierr = 0 means normal return.
c ierr = -1 : illegal value for imod
c Notes:
c-------
c This module is in place: ao and iao can be the same as asky, and isky.
c-----------------------------------------------------------------------
c local variables
integer next, kend, kstart, i, j
ierr = 0
c
c check for validity of imod
c
if (imod.ne.0 .and. imod.ne.1 .and. imod .ne. 2) then
ierr =-1
return
endif
c
c next = pointer to next available position in output matrix
c kend = pointer to end of current row in skyline matrix.
c
next = 1
c
c set kend = start position -1 in skyline matrix.
c
kend = 0
if (imod .eq. 1) kend = isky(1)-1
if (imod .eq. 0) kend = isky(1)
c
c loop through all rows
c
do 50 i=1,n
c
c save value of pointer to ith row in output matrix
c
iao(i) = next
c
c get beginnning and end of skyline row
c
kstart = kend+1
if (imod .eq. 0) kend = isky(i+1)
if (imod .eq. 1) kend = isky(i+1)-1
if (imod .eq. 2) kend = isky(i)
c
c copy element into output matrix unless it is a zero element.
c
do 40 k=kstart,kend
if (asky(k) .eq. 0.0d0) goto 40
j = i-(kend-k)
jao(next) = j
ao(next) = asky(k)
next=next+1
if (next .gt. nzmax+1) then
ierr = i
return
endif
40 continue
50 continue
iao(n+1) = next
return
c-------------end-of-sskssr --------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrjad (nrow, a, ja, ia, idiag, iperm, ao, jao, iao)
integer ja(*), jao(*), ia(nrow+1), iperm(nrow), iao(nrow)
real*8 a(*), ao(*)
c-----------------------------------------------------------------------
c Compressed Sparse Row to JAgged Diagonal storage.
c-----------------------------------------------------------------------
c this subroutine converts matrix stored in the compressed sparse
c row format to the jagged diagonal format. The data structure
c for the JAD (Jagged Diagonal storage) is as follows. The rows of
c the matrix are (implicitly) permuted so that their lengths are in
c decreasing order. The real entries ao(*) and their column indices
c jao(*) are stored in succession. The number of such diagonals is idiag.
c the lengths of each of these diagonals is stored in iao(*).
c For more details see [E. Anderson and Y. Saad,
c ``Solving sparse triangular systems on parallel computers'' in
c Inter. J. of High Speed Computing, Vol 1, pp. 73-96 (1989).]
c or [Y. Saad, ``Krylov Subspace Methods on Supercomputers''
c SIAM J. on Stat. Scient. Comput., volume 10, pp. 1200-1232 (1989).]
c-----------------------------------------------------------------------
c on entry:
c----------
c nrow = row dimension of the matrix A.
c
c a,
c ia,
c ja = input matrix in compressed sparse row format.
c
c on return:
c----------
c
c idiag = integer. The number of jagged diagonals in the matrix.
c
c iperm = integer array of length nrow containing the permutation
c of the rows that leads to a decreasing order of the
c number of nonzero elements.
c
c ao = real array containing the values of the matrix A in
c jagged diagonal storage. The j-diagonals are stored
c in ao in sequence.
c
c jao = integer array containing the column indices of the
c entries in ao.
c
c iao = integer array containing pointers to the beginning
c of each j-diagonal in ao, jao. iao is also used as
c a work array and it should be of length n at least.
c
c-----------------------------------------------------------------------
c ---- define initial iperm and get lengths of each row
c ---- jao is used a work vector to store tehse lengths
c
idiag = 0
ilo = nrow
do 10 j=1, nrow
iperm(j) = j
len = ia(j+1) - ia(j)
ilo = min(ilo,len)
idiag = max(idiag,len)
jao(j) = len
10 continue
c
c call sorter to get permutation. use iao as work array.
c
call dcsort (jao, nrow, iao, iperm, ilo, idiag)
c
c define output data structure. first lengths of j-diagonals
c
do 20 j=1, nrow
iao(j) = 0
20 continue
do 40 k=1, nrow
len = jao(iperm(k))
do 30 i=1,len
iao(i) = iao(i)+1
30 continue
40 continue
c
c get the output matrix itself
c
k1 = 1
k0 = k1
do 60 jj=1, idiag
len = iao(jj)
do 50 k=1,len
i = ia(iperm(k))+jj-1
ao(k1) = a(i)
jao(k1) = ja(i)
k1 = k1+1
50 continue
iao(jj) = k0
k0 = k1
60 continue
iao(idiag+1) = k1
return
c----------end-of-csrjad------------------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine jadcsr (nrow, idiag, a, ja, ia, iperm, ao, jao, iao)
integer ja(*), jao(*), ia(idiag+1), iperm(nrow), iao(nrow+1)
real*8 a(*), ao(*)
c-----------------------------------------------------------------------
c Jagged Diagonal Storage to Compressed Sparse Row
c-----------------------------------------------------------------------
c this subroutine converts a matrix stored in the jagged diagonal format
c to the compressed sparse row format.
c-----------------------------------------------------------------------
c on entry:
c----------
c nrow = integer. the row dimension of the matrix A.
c
c idiag = integer. The number of jagged diagonals in the data
c structure a, ja, ia.
c
c a,
c ja,
c ia = input matrix in jagged diagonal format.
c
c iperm = permutation of the rows used to obtain the JAD ordering.
c
c on return:
c----------
c
c ao, jao,
c iao = matrix in CSR format.
c-----------------------------------------------------------------------
c determine first the pointers for output matrix. Go through the
c structure once:
c
do 137 j=1,nrow
jao(j) = 0
137 continue
c
c compute the lengths of each row of output matrix -
c
do 140 i=1, idiag
len = ia(i+1)-ia(i)
do 138 k=1,len
jao(iperm(k)) = jao(iperm(k))+1
138 continue
140 continue
c
c remember to permute
c
kpos = 1
iao(1) = 1
do 141 i=1, nrow
kpos = kpos+jao(i)
iao(i+1) = kpos
141 continue
c
c copy elemnts one at a time.
c
do 200 jj = 1, idiag
k1 = ia(jj)-1
len = ia(jj+1)-k1-1
do 160 k=1,len
kpos = iao(iperm(k))
ao(kpos) = a(k1+k)
jao(kpos) = ja(k1+k)
iao(iperm(k)) = kpos+1
160 continue
200 continue
c
c rewind pointers
c
do 5 j=nrow,1,-1
iao(j+1) = iao(j)
5 continue
iao(1) = 1
return
c----------end-of-jadcsr------------------------------------------------
c-----------------------------------------------------------------------
end
subroutine dcsort(ival, n, icnt, index, ilo, ihi)
c-----------------------------------------------------------------------
c Specifications for arguments:
c ----------------------------
integer n, ilo, ihi, ival(n), icnt(ilo:ihi), index(n)
c-----------------------------------------------------------------------
c This routine computes a permutation which, when applied to the
c input vector ival, sorts the integers in ival in descending
c order. The permutation is represented by the vector index. The
c permuted ival can be interpreted as follows:
c ival(index(i-1)) .ge. ival(index(i)) .ge. ival(index(i+1))
c
c A specialized sort, the distribution counting sort, is used
c which takes advantage of the knowledge that
c 1) The values are in the (small) range [ ilo, ihi ]
c 2) Values are likely to be repeated often
c
c contributed to SPARSKIT by Mike Heroux. (Cray Research)
c ---------------------------------------
c-----------------------------------------------------------------------
c Usage:
c------
c call dcsort( ival, n, icnt, index, ilo, ihi )
c
c Arguments:
c-----------
c ival integer array (input)
c On entry, ia is an n dimensional array that contains
c the values to be sorted. ival is unchanged on exit.
c
c n integer (input)
c On entry, n is the number of elements in ival and index.
c
c icnt integer (work)
c On entry, is an integer work vector of length
c (ihi - ilo + 1).
c
c index integer array (output)
c On exit, index is an n-length integer vector containing
c the permutation which sorts the vector ival.
c
c ilo integer (input)
c On entry, ilo is .le. to the minimum value in ival.
c
c ihi integer (input)
c On entry, ihi is .ge. to the maximum value in ival.
c
c Remarks:
c---------
c The permutation is NOT applied to the vector ival.
c
c----------------------------------------------------------------
c
c Local variables:
c Other integer values are temporary indices.
c
c Author:
c--------
c Michael Heroux
c Sandra Carney
c Mathematical Software Research Group
c Cray Research, Inc.
c
c References:
c Knuth, Donald E., "The Art of Computer Programming, Volume 3:
c Sorting and Searching," Addison-Wesley, Reading, Massachusetts,
c 1973, pp. 78-79.
c
c Revision history:
c 05/09/90: Original implementation. A variation of the
c Distribution Counting Sort recommended by
c Sandra Carney. (Mike Heroux)
c
c-----------------------------------------------------------------
c ----------------------------------
c Specifications for local variables
c ----------------------------------
integer i, j, ivalj
c
c --------------------------
c First executable statement
c --------------------------
do 10 i = ilo, ihi
icnt(i) = 0
10 continue
c
do 20 i = 1, n
icnt(ival(i)) = icnt(ival(i)) + 1
20 continue
c
do 30 i = ihi-1,ilo,-1
icnt(i) = icnt(i) + icnt(i+1)
30 continue
c
do 40 j = n, 1, -1
ivalj = ival(j)
index(icnt(ivalj)) = j
icnt(ivalj) = icnt(ivalj) - 1
40 continue
return
end
c-------end-of-dcsort---------------------------------------------------
c-----------------------------------------------------------------------
subroutine cooell(job,n,nnz,a,ja,ia,ao,jao,lda,ncmax,nc,ierr)
implicit none
integer job,n,nnz,lda,ncmax,nc,ierr
integer ja(nnz),ia(nnz),jao(lda,ncmax)
real*8 a(nnz),ao(lda,ncmax)
c-----------------------------------------------------------------------
c COOrdinate format to ELLpack format
c-----------------------------------------------------------------------
c On entry:
c job -- 0 if only pattern is to be processed(AO is not touched)
c n -- number of rows in the matrix
c a,ja,ia -- input matix in COO format
c lda -- leading dimension of array AO and JAO
c ncmax -- size of the second dimension of array AO and JAO
c
c On exit:
c ao,jao -- the matrix in ELL format
c nc -- maximum number of nonzeros per row
c ierr -- 0 if convertion succeeded
c -1 if LDA < N
c nc if NC > ncmax
c
c NOTE: the last column of JAO is used as work space!!
c-----------------------------------------------------------------------
integer i,j,k,ip
real*8 zero
logical copyval
parameter (zero=0.0D0)
c .. first executable statement ..
copyval = (job.ne.0)
if (lda .lt. n) then
ierr = -1
return
endif
c .. use the last column of JAO as workspace
c .. initialize the work space
do i = 1, n
jao(i,ncmax) = 0
enddo
nc = 0
c .. go through ia and ja to find out number nonzero per row
do k = 1, nnz
i = ia(k)
jao(i,ncmax) = jao(i,ncmax) + 1
enddo
c .. maximum number of nonzero per row
nc = 0
do i = 1, n
if (nc.lt.jao(i,ncmax)) nc = jao(i,ncmax)
jao(i,ncmax) = 0
enddo
c .. if nc > ncmax retrun now
if (nc.gt.ncmax) then
ierr = nc
return
endif
c .. go through ia and ja to copy the matrix to AO and JAO
do k = 1, nnz
i = ia(k)
j = ja(k)
jao(i,ncmax) = jao(i,ncmax) + 1
ip = jao(i,ncmax)
if (ip.gt.nc) nc = ip
if (copyval) ao(i,ip) = a(k)
jao(i,ip) = j
enddo
c .. fill the unspecified elements of AO and JAO with zero diagonals
do i = 1, n
do j = ia(i+1)-ia(i)+1, nc
jao(i,j)=i
if(copyval) ao(i,j) = zero
enddo
enddo
ierr = 0
c
return
end
c-----end-of-cooell-----------------------------------------------------
c-----------------------------------------------------------------------
subroutine xcooell(n,nnz,a,ja,ia,ac,jac,nac,ner,ncmax,ierr)
C-----------------------------------------------------------------------
C coordinate format to ellpack format.
C-----------------------------------------------------------------------
C
C DATE WRITTEN: June 4, 1989.
C
C PURPOSE
C -------
C This subroutine takes a sparse matrix in coordinate format and
C converts it into the Ellpack-Itpack storage.
C
C Example:
C -------
C ( 11 0 13 0 0 0 )
C | 21 22 0 24 0 0 |
C | 0 32 33 0 35 0 |
C A = | 0 0 43 44 0 46 |
C | 51 0 0 54 55 0 |
C ( 61 62 0 0 65 66 )
C
C Coordinate storage scheme:
C
C A = (11,22,33,44,55,66,13,21,24,32,35,43,46,51,54,61,62,65)
C IA = (1, 2, 3, 4, 5, 6, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6 )
C JA = ( 1, 2, 3, 4, 5, 6, 3, 1, 4, 2, 5, 3, 6, 1, 4, 1, 2, 5)
C
C Ellpack-Itpack storage scheme:
C
C ( 11 13 0 0 ) ( 1 3 * * )
C | 22 21 24 0 | | 2 1 4 * |
C AC = | 33 32 35 0 | JAC = | 3 2 5 * |
C | 44 43 46 0 | | 4 3 6 * |
C | 55 51 54 0 | | 5 1 4 * |
C ( 66 61 62 65 ) ( 6 1 2 5 )
C
C Note: * means that you can store values from 1 to 6 (1 to n, where
C n is the order of the matrix) in that position in the array.
C
C Contributed by:
C ---------------
C Ernest E. Rothman
C Cornell Thoery Center/Cornell National Supercomputer Facility
C e-mail address: BITNET: EER@CORNELLF.BITNET
C INTERNET: eer@cornellf.tn.cornell.edu
C
C checked and modified 04/13/90 Y.Saad.
C
C REFERENCES
C ----------
C Kincaid, D. R.; Oppe, T. C.; Respess, J. R.; Young, D. M. 1984.
C ITPACKV 2C User's Guide, CNA-191. Center for Numerical Analysis,
C University of Texas at Austin.
C
C "Engineering and Scientific Subroutine Library; Guide and
C Reference; Release 3 (SC23-0184-3). Pp. 79-86.
C
C-----------------------------------------------------------------------
C
C INPUT PARAMETERS
C ----------------
C N - Integer. The size of the square matrix.
C
C NNZ - Integer. Must be greater than or equal to the number of
C nonzero elements in the sparse matrix. Dimension of A, IA
C and JA.
C
C NCA - Integer. First dimension of output arrays ca and jac.
C
C A(NNZ) - Real array. (Double precision)
C Stored entries of the sparse matrix A.
C NNZ is the number of nonzeros.
C
C IA(NNZ) - Integer array.
C Pointers to specify rows for the stored nonzero entries
C in A.
C
C JA(NNZ) - Integer array.
C Pointers to specify columns for the stored nonzero
C entries in A.
C
C NER - Integer. Must be set greater than or equal to the maximum
C number of nonzeros in any row of the sparse matrix.
C
C OUTPUT PARAMETERS
C -----------------
C AC(NAC,*) - Real array. (Double precision)
C Stored entries of the sparse matrix A in compressed
C storage mode.
C
C JAC(NAC,*) - Integer array.
C Contains the column numbers of the sparse matrix
C elements stored in the corresponding positions in
C array AC.
C
C NCMAX - Integer. Equals the maximum number of nonzeros in any
C row of the sparse matrix.
C
C IERR - Error parameter is returned as zero on successful
C execution of the subroutin<e.
C Error diagnostics are given by means of positive values
C of this parameter as follows:
C
C IERR = -1 - NER is too small and should be set equal
C to NCMAX. The array AC may not be large
C enough to accomodate all the non-zeros of
C of the sparse matrix.
C IERR = 1 - The array AC has a zero column. (Warning)
C IERR = 2 - The array AC has a zero row. (Warning)
C
C---------------------------------------------------------------------
real*8 a(nnz), ac(nac,ner)
integer ja(nnz), ia(nnz), jac(nac,ner), ierr, ncmax, icount
c
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c Initial error parameter to zero:
c
ierr = 0
c
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c Initial output arrays to zero:
c
do 4 in = 1,ner
do 4 innz =1,n
jac(innz,in) = n
ac(innz,in) = 0.0d0
4 continue
c
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c
c Assign nonzero elements of the sparse matrix (stored in the one
c dimensional array A to the two dimensional array AC.
c Also, assign the correct values with information about their
c column indices to the two dimensional array KA. And at the same
c time count the number of nonzeros in each row so that the
c parameter NCMAX equals the maximum number of nonzeros in any row
c of the sparse matrix.
c
ncmax = 1
do 10 is = 1,n
k = 0
do 30 ii = 1,nnz
if(ia(ii).eq.is)then
k = k + 1
if (k .le. ner) then
ac(is,k) = a(ii)
jac(is,k) = ja(ii)
endif
endif
30 continue
if (k.ge.ncmax) ncmax = k
10 continue
c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
c
c Perform some simple error checks:
c
check maximum number of nonzeros in each row:
if (ncmax.eq.ner) ierr = 0
if (ncmax.gt.ner) then
ierr = -1
return
endif
c
check if there are any zero columns in AC:
c
do 45 in = 1,ncmax
icount = 0
do 44 inn =1,n
if (ac(inn,in).ne.0.0d0) icount = 1
44 continue
if (icount.eq.0) then
ierr = 1
return
endif
45 continue
c
check if there are any zero rows in AC:
c
do 55 inn = 1,n
icount = 0
do 54 in =1,ncmax
if (ac(inn,in).ne.0.0d0) icount = 1
54 continue
if (icount.eq.0) then
ierr = 2
return
endif
55 continue
return
c------------- end of xcooell -------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csruss (nrow,a,ja,ia,diag,al,jal,ial,au,jau,iau)
real*8 a(*),al(*),diag(*),au(*)
integer nrow,ja(*),ia(nrow+1),jal(*),ial(nrow+1),jau(*),
* iau(nrow+1)
c-----------------------------------------------------------------------
c Compressed Sparse Row to Unsymmetric Sparse Skyline format
c-----------------------------------------------------------------------
c this subroutine converts a matrix stored in csr format into a nonsym.
c sparse skyline format. This latter format does not assume
c that the matrix has a symmetric pattern and consists of the following
c * the diagonal of A stored separately in diag(*);
c * The strict lower part of A is stored in CSR format in al,jal,ial
c * The strict upper part is stored in CSC format in au,jau,iau.
c-----------------------------------------------------------------------
c On entry
c---------
c nrow = dimension of the matrix a.
c a = real array containing the nonzero values of the matrix
c stored rowwise.
c ja = column indices of the values in array a
c ia = integer array of length n+1 containing the pointers to
c beginning of each row in arrays a, ja.
c
c On return
c----------
c diag = array containing the diagonal entries of A
c al,jal,ial = matrix in CSR format storing the strict lower
c trangular part of A.
c au,jau,iau = matrix in CSC format storing the strict upper
c triangular part of A.
c-----------------------------------------------------------------------
integer i, j, k, kl, ku
c
c determine U's data structure first
c
do 1 i=1,nrow+1
iau(i) = 0
1 continue
do 3 i=1, nrow
do 2 k=ia(i), ia(i+1)-1
j = ja(k)
if (j .gt. i) iau(j+1) = iau(j+1)+1
2 continue
3 continue
c
c compute pointers from lengths
c
iau(1) = 1
do 4 i=1,nrow
iau(i+1) = iau(i)+iau(i+1)
ial(i+1) = ial(i)+ial(i+1)
4 continue
c
c now do the extractions. scan all rows.
c
kl = 1
ial(1) = kl
do 7 i=1, nrow
c
c scan all elements in a row
c
do 71 k = ia(i), ia(i+1)-1
j = ja(k)
c
c if in upper part, store in row j (of transp(U) )
c
if (j .gt. i) then
ku = iau(j)
au(ku) = a(k)
jau(ku) = i
iau(j) = ku+1
elseif (j .eq. i) then
diag(i) = a(k)
elseif (j .lt. i) then
al(kl) = a(k)
jal(kl) = j
kl = kl+1
endif
71 continue
ial(i+1) = kl
7 continue
c
c readjust iau
c
do 8 i=nrow,1,-1
iau(i+1) = iau(i)
8 continue
iau(1) = 1
c--------------- end-of-csruss -----------------------------------------
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine usscsr (nrow,a,ja,ia,diag,al,jal,ial,au,jau,iau)
real*8 a(*),al(*),diag(*),au(*)
integer ja(*),ia(nrow+1),jal(*),ial(nrow+1),jau(*),iau(nrow+1)
c-----------------------------------------------------------------------
c Unsymmetric Sparse Skyline format to Compressed Sparse Row
c-----------------------------------------------------------------------
c this subroutine converts a matrix stored in nonsymmetric sparse
c skyline format into csr format. The sparse skyline format is
c described in routine csruss.
c-----------------------------------------------------------------------
c-----------------------------------------------------------------------
c On entry
c-----------------------------------------------------------------------
c nrow = dimension of the matrix a.
c diag = array containing the diagonal entries of A
c al,jal,ial = matrix in CSR format storing the strict lower
c trangular part of A.
c au,jau,iau = matrix in CSC format storing the strict upper
c trangular part of A.
c On return
c ---------
c a = real array containing the nonzero values of the matrix
c stored rowwise.
c ja = column indices of the values in array a
c ia = integer array of length n+1 containing the pointers to
c beginning of each row in arrays a, ja.
c
c-----------------------------------------------------------------------
c
c count elements in lower part + diagonal
c
do 1 i=1, nrow
ia(i+1) = ial(i+1)-ial(i)+1
1 continue
c
c count elements in upper part
c
do 3 i=1, nrow
do 2 k=iau(i), iau(i+1)-1
j = jau(k)
ia(j+1) = ia(j+1)+1
2 continue
3 continue
c---------- compute pointers from lengths ------------------------------
ia(1) = 1
do 4 i=1,nrow
ia(i+1) = ia(i)+ia(i+1)
4 continue
c
c copy lower part + diagonal
c
do 6 i=1, nrow
ka = ia(i)
do 5 k=ial(i), ial(i+1)-1
a(ka) = al(k)
ja(ka) = jal(k)
ka = ka+1
5 continue
a(ka) = diag(i)
ja(ka) = i
ia(i) = ka+1
6 continue
c
c copy upper part
c
do 8 i=1, nrow
do 7 k=iau(i), iau(i+1)-1
c
c row number
c
jak = jau(k)
c
c where element goes
c
ka = ia(jak)
a(ka) = au(k)
ja(ka) = i
ia(jak) = ka+1
7 continue
8 continue
c
c readjust ia
c
do 9 i=nrow,1,-1
ia(i+1) = ia(i)
9 continue
ia(1) = 1
c----------end-of-usscsr------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrsss (nrow,a,ja,ia,sorted,diag,al,jal,ial,au)
real*8 a(*),al(*),diag(*),au(*)
integer ja(*),ia(nrow+1),jal(*),ial(nrow+1)
logical sorted
c-----------------------------------------------------------------------
c Compressed Sparse Row to Symmetric Sparse Skyline format
c-----------------------------------------------------------------------
c this subroutine converts a matrix stored in csr format into the
c Symmetric sparse skyline format. This latter format assumes that
c that the matrix has a symmetric pattern. It consists of the following
c * the diagonal of A stored separately in diag(*);
c * The strict lower part of A is stored in csr format in al,jal,ial
c * The values only of strict upper part as stored in csc format in au.
c-----------------------------------------------------------------------
c On entry
c-----------
c nrow = dimension of the matrix a.
c a = real array containing the nonzero values of the matrix
c stored rowwise.
c ja = column indices of the values in array a
c ia = integer array of length n+1 containing the pointers to
c beginning of each row in arrays a, ja.
c sorted= a logical indicating whether or not the elements in a,ja,ia
c are sorted.
c
c On return
c ---------
c diag = array containing the diagonal entries of A
c al,jal,ial = matrix in csr format storing the strict lower
c trangular part of A.
c au = values of the strict upper trangular part of A, column wise.
c-----------------------------------------------------------------------
c
c extract lower part and diagonal.
c
kl = 1
ial(1) = kl
do 7 i=1, nrow
c
c scan all elements in a row
c
do 71 k = ia(i), ia(i+1)-1
jak = ja(k)
if (jak .eq. i) then
diag(i) = a(k)
elseif (jak .lt. i) then
al(kl) = a(k)
jal(kl) = jak
kl = kl+1
endif
71 continue
ial(i+1) = kl
7 continue
c
c sort if not sorted
c
if (.not. sorted) then
call csort (nrow, al, jal, ial, au, .true.)
endif
c
c copy u
c
do 8 i=1, nrow
c
c scan all elements in a row
c
do 81 k = ia(i), ia(i+1)-1
jak = ja(k)
if (jak .gt. i) then
ku = ial(jak)
au(ku) = a(k)
ial(jak) = ku+1
endif
81 continue
8 continue
c
c readjust ial
c
do 9 i=nrow,1,-1
ial(i+1) = ial(i)
9 continue
ial(1) = 1
c--------------- end-of-csrsss -----------------------------------------
c-----------------------------------------------------------------------
end
c
subroutine ssscsr (nrow,a,ja,ia,diag,al,jal,ial,au)
real*8 a(*),al(*),diag(*),au(*)
integer ja(*),ia(nrow+1),jal(*),ial(nrow+1)
c-----------------------------------------------------------------------
c Unsymmetric Sparse Skyline format to Compressed Sparse Row
c-----------------------------------------------------------------------
c this subroutine converts a matrix stored in nonsymmetric sparse
c skyline format into csr format. The sparse skyline format is
c described in routine csruss.
c-----------------------------------------------------------------------
c On entry
c---------
c diag = array containing the diagonal entries of A
c al,jal,ial = matrix in csr format storing the strict lower
c trangular part of A.
c au = values of strict upper part.
c
c On return
c ---------
c nrow = dimension of the matrix a.
c a = real array containing the nonzero values of the matrix
c stored rowwise.
c ja = column indices of the values in array a
c ia = integer array of length n+1 containing the pointers to
c beginning of each row in arrays a, ja.
c
c-----------------------------------------------------------------------
c
c count elements in lower part + diagonal
c
do 1 i=1, nrow
ia(i+1) = ial(i+1)-ial(i)+1
1 continue
c
c count elements in upper part
c
do 3 i=1, nrow
do 2 k=ial(i), ial(i+1)-1
j = jal(k)
ia(j+1) = ia(j+1)+1
2 continue
3 continue
c---------- compute pointers from lengths ------------------------------
ia(1) = 1
do 4 i=1,nrow
ia(i+1) = ia(i)+ia(i+1)
4 continue
c
c copy lower part + diagonal
c
do 6 i=1, nrow
ka = ia(i)
do 5 k=ial(i), ial(i+1)-1
a(ka) = al(k)
ja(ka) = jal(k)
ka = ka+1
5 continue
a(ka) = diag(i)
ia(i) = ka+1
6 continue
c
c copy upper part
c
do 8 i=1, nrow
do 7 k=ial(i), ial(i+1)-1
c
c row number
c
jak = jal(k)
c
c where element goes
c
ka = ia(jak)
a(ka) = au(k)
ja(ka) = i
ia(jak) = ka+1
7 continue
8 continue
c
c readjust ia
c
do 9 i=nrow,1,-1
ia(i+1) = ia(i)
9 continue
ia(1) = 1
c----------end-of-ssscsr------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine csrvbr(n,ia,ja,a,nr,nc,kvstr,kvstc,ib,jb,kb,
& b, job, iwk, nkmax, nzmax, ierr )
c-----------------------------------------------------------------------
integer n, ia(n+1), ja(*), nr, nc, ib(*), jb(nkmax-1), kb(nkmax)
integer kvstr(*), kvstc(*), job, iwk(*), nkmax, nzmax, ierr
real*8 a(*), b(nzmax)
c-----------------------------------------------------------------------
c Converts compressed sparse row to variable block row format.
c-----------------------------------------------------------------------
c On entry:
c--------------
c n = number of matrix rows
c ia,ja,a = input matrix in CSR format
c
c job = job indicator.
c If job=0, kvstr and kvstc are used as supplied.
c If job=1, kvstr and kvstc are determined by the code.
c If job=2, a conformal row/col partitioning is found and
c returned in both kvstr and kvstc. In the latter two cases,
c an optimized algorithm can be used to perform the
c conversion because all blocks are full.
c
c nkmax = size of supplied jb and kb arrays
c nzmax = size of supplied b array
c
c If job=0 then the following are input:
c nr,nc = matrix block row and block column dimension
c kvstr = first row number for each block row
c kvstc = first column number for each block column.
c (kvstr and kvstc may be the same array)
c
c On return:
c---------------
c
c ib,jb,kb,b = output matrix in VBR format
c
c ierr = error message
c ierr = 0 means normal return
c ierr = 1 out of space in jb and/or kb arrays
c ierr = 2 out of space in b array
c ierr = 3 nonsquare matrix used with job=2
c
c If job=1,2 then the following are output:
c nr,nc = matrix block row and block column dimension
c kvstr = first row number for each block row
c kvstc = first column number for each block column
c If job=2, then kvstr and kvstc contain the same info.
c
c Work space:
c----------------
c iwk(1:ncol) = inverse kvstc array. If job=1,2 then we also need:
c iwk(ncol+1:ncol+nr) = used to help determine sparsity of each block row.
c The workspace is not assumed to be initialized to zero, nor is it
c left that way.
c
c Algorithms:
c----------------
c There are two conversion codes in this routine. The first assumes
c that all blocks are full (there is a nonzero in the CSR data
c structure for each entry in the block), and is used if the routine
c determines the block partitioning itself. The second code makes
c no assumptions about the block partitioning, and is used if the
c caller provides the partitioning. The second code is much less
c efficient than the first code.
c
c In the first code, the CSR data structure is traversed sequentially
c and entries are placed into the VBR data structure with stride
c equal to the row dimension of the block row. The columns of the
c CSR data structure are sorted first if necessary.
c
c In the second code, the block sparsity pattern is first determined.
c This is done by traversing the CSR data structure and using an
c implied linked list to determine which blocks are nonzero. Then
c the VBR data structure is filled by mapping each individual entry
c in the CSR data structure into the VBR data structure. The columns
c of the CSR data structure are sorted first if necessary.
c
c-----------------------------------------------------------------------
c Local variables:
c---------------------
integer ncol, nb, neqr, numc, a0, b0, b1, k0, i, ii, j, jj, jnew
logical sorted
c
c ncol = number of scalar columns in matrix
c nb = number of blocks in conformal row/col partitioning
c neqr = number of rows in block row
c numc = number of nonzero columns in row
c a0 = index for entries in CSR a array
c b0 = index for entries in VBR b array
c b1 = temp
c k0 = index for entries in VBR kb array
c i = loop index for block rows
c ii = loop index for scalar rows in block row
c j = loop index for block columns
c jj = loop index for scalar columns in block column
c jnew = block column number
c sorted = used to indicate if matrix already sorted by columns
c
c-----------------------------------------------------------------------
ierr = 0
c-----sort matrix by column indices
call csorted(n, ia, ja, sorted)
if (.not. sorted) then
call csort (n, a, ja, ia, b, .true.)
endif
if (job .eq. 1 .or. job .eq. 2) then
c--------need to zero workspace; first find ncol
ncol = 0
do i = 2, n
ncol = max0(ncol, ja(ia(i)-1))
enddo
do i = 1, ncol
iwk(i) = 0
enddo
call csrkvstr(n, ia, ja, nr, kvstr)
call csrkvstc(n, ia, ja, nc, kvstc, iwk)
endif
c-----check if want conformal partitioning
if (job .eq. 2) then
if (kvstr(nr+1) .ne. kvstc(nc+1)) then
ierr = 3
return
endif
c use iwk temporarily
call kvstmerge(nr, kvstr, nc, kvstc, nb, iwk)
nr = nb
nc = nb
do i = 1, nb+1
kvstr(i) = iwk(i)
kvstc(i) = iwk(i)
enddo
endif
c-----------------------------------------------------------------------
c inverse kvst (scalar col number) = block col number
c stored in iwk(1:n)
c-----------------------------------------------------------------------
do i = 1, nc
do j = kvstc(i), kvstc(i+1)-1
iwk(j) = i
enddo
enddo
ncol = kvstc(nc+1)-1
c-----jump to conversion routine
if (job .eq. 0) goto 400
c-----------------------------------------------------------------------
c Fast conversion for computed block partitioning
c-----------------------------------------------------------------------
a0 = 1
b0 = 1
k0 = 1
kb(1) = 1
c-----loop on block rows
do i = 1, nr
neqr = kvstr(i+1) - kvstr(i)
numc = ia(kvstr(i)+1) - ia(kvstr(i))
ib(i) = k0
c--------loop on first row in block row to determine block sparsity
j = 0
do jj = ia(kvstr(i)), ia(kvstr(i)+1)-1
jnew = iwk(ja(jj))
if (jnew .ne. j) then
c--------------check there is enough space in kb and jb arrays
if (k0+1 .gt. nkmax) then
ierr = 1
write (*,*) 'csrvbr: no space in kb for block row ', i
return
endif
c--------------set entries for this block
j = jnew
b0 = b0 + neqr * (kvstc(j+1) - kvstc(j))
kb(k0+1) = b0
jb(k0) = j
k0 = k0 + 1
endif
enddo
c--------loop on scalar rows in block row
do ii = 0, neqr-1
b1 = kb(ib(i))+ii
c-----------loop on elements in a scalar row
do jj = 1, numc
c--------------check there is enough space in b array
if (b1 .gt. nzmax) then
ierr = 2
write (*,*) 'csrvbr: no space in b for block row ', i
return
endif
b(b1) = a(a0)
b1 = b1 + neqr
a0 = a0 + 1
enddo
enddo
enddo
ib(nr+1) = k0
return
c-----------------------------------------------------------------------
c Conversion for user supplied block partitioning
c-----------------------------------------------------------------------
400 continue
c-----initialize workspace for sparsity indicator
do i = ncol+1, ncol+nc
iwk(i) = 0
enddo
k0 = 1
kb(1) = 1
c-----find sparsity of block rows
do i = 1, nr
neqr = kvstr(i+1) - kvstr(i)
numc = ia(kvstr(i)+1) - ia(kvstr(i))
ib(i) = k0
c--------loop on all the elements in the block row to determine block sparsity
do jj = ia(kvstr(i)), ia(kvstr(i+1))-1
iwk(iwk(ja(jj))+ncol) = 1
enddo
c--------use sparsity to set jb and kb arrays
do j = 1, nc
if (iwk(j+ncol) .ne. 0) then
c--------------check there is enough space in kb and jb arrays
if (k0+1 .gt. nkmax) then
ierr = 1
write (*,*) 'csrvbr: no space in kb for block row ', i
return
endif
kb(k0+1) = kb(k0) + neqr * (kvstc(j+1) - kvstc(j))
jb(k0) = j
k0 = k0 + 1
iwk(j+ncol) = 0
endif
enddo
enddo
ib(nr+1) = k0
c-----Fill b with entries from a by traversing VBR data structure.
a0 = 1
c-----loop on block rows
do i = 1, nr
neqr = kvstr(i+1) - kvstr(i)
c--------loop on scalar rows in block row
do ii = 0, neqr-1
b0 = kb(ib(i)) + ii
c-----------loop on block columns
do j = ib(i), ib(i+1)-1
c--------------loop on scalar columns within block column
do jj = kvstc(jb(j)), kvstc(jb(j)+1)-1
c-----------------check there is enough space in b array
if (b0 .gt. nzmax) then
ierr = 2
write (*,*)'csrvbr: no space in b for blk row',i
return
endif
if (a0 .ge. ia(kvstr(i)+ii+1)) then
b(b0) = 0.d0
else
if (jj .eq. ja(a0)) then
b(b0) = a(a0)
a0 = a0 + 1
else
b(b0) = 0.d0
endif
endif
b0 = b0 + neqr
c--------------endloop on scalar columns
enddo
c-----------endloop on block columns
enddo
2020 continue
enddo
enddo
return
end
c-----------------------------------------------------------------------
c----------------------------end-of-csrvbr------------------------------
c----------------------------------------------------------------------c
subroutine vbrcsr(ia, ja, a, nr, kvstr, kvstc, ib, jb, kb,
& b, nzmax, ierr)
c-----------------------------------------------------------------------
integer ia(*), ja(*), nr, ib(nr+1), jb(*), kb(*)
integer kvstr(nr+1), kvstc(*), nzmax, ierr
real*8 a(*), b(nzmax)
c-----------------------------------------------------------------------
c Converts variable block row to compressed sparse row format.
c-----------------------------------------------------------------------
c On entry:
c--------------
c nr = number of block rows
c kvstr = first row number for each block row
c kvstc = first column number for each block column
c ib,jb,kb,b = input matrix in VBR format
c nzmax = size of supplied ja and a arrays
c
c On return:
c---------------
c ia,ja,a = output matrix in CSR format
c
c ierr = error message
c ierr = 0 means normal return
c ierr = negative row number when out of space in
c ja and a arrays
c
c Work space:
c----------------
c None
c
c Algorithm:
c---------------
c The VBR data structure is traversed in the order that is required
c to fill the CSR data structure. In a given block row, consecutive
c entries in the CSR data structure are entries in the VBR data
c structure with stride equal to the row dimension of the block.
c The VBR data structure is assumed to be sorted by block columns.
c
c-----------------------------------------------------------------------
c Local variables:
c---------------------
integer neqr, numc, a0, b0, i, ii, j, jj
c
c neqr = number of rows in block row
c numc = number of nonzero columns in row
c a0 = index for entries in CSR a array
c b0 = index for entries in VBR b array
c i = loop index for block rows
c ii = loop index for scalar rows in block row
c j = loop index for block columns
c jj = loop index for scalar columns in block column
c
c-----------------------------------------------------------------------
ierr = 0
a0 = 1
b0 = 1
c-----loop on block rows
do i = 1, nr
c--------set num of rows in block row, and num of nonzero cols in row
neqr = kvstr(i+1) - kvstr(i)
numc = ( kb(ib(i+1)) - kb(ib(i)) ) / neqr
c--------construct ja for a scalar row
do j = ib(i), ib(i+1)-1
do jj = kvstc(jb(j)), kvstc(jb(j)+1)-1
ja(a0) = jj
a0 = a0 + 1
enddo
enddo
c--------construct neqr-1 additional copies of ja for the block row
do ii = 1, neqr-1
do j = 1, numc
ja(a0) = ja(a0-numc)
a0 = a0 + 1
enddo
enddo
c--------reset a0 back to beginning of block row
a0 = kb(ib(i))
c--------loop on scalar rows in block row
do ii = 0, neqr-1
ia(kvstr(i)+ii) = a0
b0 = kb(ib(i)) + ii
c-----------loop on elements in a scalar row
do jj = 1, numc
c--------------check there is enough space in a array
if (a0 .gt. nzmax) then
ierr = -(kvstr(i)+ii)
write (*,*) 'vbrcsr: no space for row ', -ierr
return
endif
a(a0) = b(b0)
a0 = a0 + 1
b0 = b0 + neqr
enddo
enddo
c-----endloop on block rows
enddo
ia(kvstr(nr+1)) = a0
return
end
c-----------------------------------------------------------------------
c---------------------------end-of-vbrcsr-------------------------------
c-----------------------------------------------------------------------
c-----------------------------------------------------------------------
subroutine csorted(n, ia, ja, sorted)
c-----------------------------------------------------------------------
integer n, ia(n+1), ja(*)
logical sorted
c-----------------------------------------------------------------------
c Checks if matrix in CSR format is sorted by columns.
c-----------------------------------------------------------------------
c On entry:
c--------------
c n = number of rows in matrix
c ia, ja = sparsity structure of matrix in CSR format
c
c On return:
c---------------
c sorted = indicates if matrix is sorted by columns
c
c-----------------------------------------------------------------------
c-----local variables
integer i,j
c---------------------------------
do i = 1, n
do j = ia(i)+1, ia(i+1)-1
if (ja(j-1) .ge. ja(j)) then
sorted = .false.
return
endif
enddo
enddo
sorted = .true.
return
end
c-----------------------------------------------------------------------
c------------------------end-of-csorted---------------------------------
|