1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
c $Id: reordering.f,v 1.1 2008-04-11 06:01:06 geuzaine Exp $
c----------------------------------------------------------------------c
c S P A R S K I T c
c----------------------------------------------------------------------c
c ROERDERING ROUTINES -- LEVEL SET BASED ROUTINES c
c----------------------------------------------------------------------c
c BSF : Breadth-First Seearch traversal (Cuthill mc kee ordering) c
c dblstr : two-way dissection partitioning -- with equal size domains c
c stripes : routine used by dblstr to assign points c
c perphn : finds a peripheral node and does a BFS search from it. c
c add_lvst: routine for adding a new level set in BFS algorithm c
c reversp : routine to reverse a given permuation (e.g., for RCMK) c
c maskdeg : integer function to compute the `masked' of a node c
c----------------------------------------------------------------------c
subroutine BFS(n,ja,ia,nfirst,iperm,mask,maskval,riord,levels,
* nlev)
implicit none
integer n,ja(*),ia(*),nfirst,iperm(n),mask(n),riord(*),levels(*),
* nlev,maskval
c-----------------------------------------------------------------------
c finds the level-structure (breadth-first-search or CMK) ordering for a
c given sparse matrix. Uses add_lvst. Allows a set of nodes to be
c the initial level (instead of just one node). Allows masked nodes.
c-------------------------parameters------------------------------------
c on entry:
c----------
c n = number of nodes in the graph
c ja, ia = pattern of matrix in CSR format (the ja,ia arrays of csr data
c structure)
c nfirst = number of nodes in the first level that is input in riord
c iperm = integer array indicating in which order to traverse the graph
c in order to generate all connected components.
c The nodes will be traversed in order iperm(1),....,iperm(n)
c Convention:
c if iperm(1) .eq. 0 on entry then BFS will traverse the
c nodes in the order 1,2,...,n.
c
c riord = (also an ouput argument). on entry riord contains the labels
c of the nfirst nodes that constitute the first level.
c
c mask = array used to indicate whether or not a node should be
c condidered in the graph. see maskval.
c mask is also used as a marker of visited nodes.
c
c maskval= consider node i only when: mask(i) .eq. maskval
c maskval must be .gt. 0.
c thus, to consider all nodes, take mask(1:n) = 1.
c maskval=1 (for example)
c
c on return
c ---------
c mask = on return mask is restored to its initial state.
c riord = `reverse permutation array'. Contains the labels of the nodes
c constituting all the levels found, from the first level to
c the last.
c levels = pointer array for the level structure. If lev is a level
c number, and k1=levels(lev),k2=levels(lev+1)-1, then
c all the nodes of level number lev are:
c riord(k1),riord(k1+1),...,riord(k2)
c nlev = number of levels found
c-----------------------------------------------------------------------
c Notes on possible usage
c-------------------------
c 1. if you want a CMK ordering from a known node, say node init then
c call BFS with nfirst=1,iperm(1) =0, mask(1:n) =1, maskval =1,
c riord(1) = init.
c 2. if you want the RCMK ordering and you have a preferred initial node
c then use above call followed by reversp(n,riord)
c 3. Similarly to 1, and 2, but you know a good LEVEL SET to start from
c (nfirst = number if nodes in the level, riord(1:nfirst) contains
c the nodes.
c 4. If you do not know how to select a good initial node in 1 and 2,
c then you should use perphn instead.
c
c-----------------------------------------------------------------------
c local variables --
integer j, ii, nod, istart, iend
logical permut
permut = (iperm(1) .ne. 0)
c
c start pointer structure to levels
c
nlev = 0
c
c previous end
c
istart = 0
ii = 0
c
c current end
c
iend = nfirst
c
c intialize masks to zero -- except nodes of first level --
c
do 12 j=1, nfirst
mask(riord(j)) = 0
12 continue
c-----------------------------------------------------------------------
13 continue
c
1 nlev = nlev+1
levels(nlev) = istart + 1
call add_lvst (istart,iend,nlev,riord,ja,ia,mask,maskval)
if (istart .lt. iend) goto 1
2 ii = ii+1
if (ii .le. n) then
nod = ii
if (permut) nod = iperm(nod)
if (mask(nod) .eq. maskval) then
c
c start a new level
c
istart = iend
iend = iend+1
riord(iend) = nod
mask(nod) = 0
goto 1
else
goto 2
endif
endif
c-----------------------------------------------------------------------
3 levels(nlev+1) = iend+1
do j=1, iend
mask(riord(j)) = maskval
enddo
return
c-----------------------------------------------------------------------
c-----end-of-BFS--------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine dblstr(n,ja,ia,ip1,ip2,nfirst,riord,ndom,map,mapptr,
* mask,levels,iwk)
implicit none
integer ndom,ja(*),ia(*),ip1,ip2,nfirst,riord(*),map(*),mapptr(*),
* mask(*),levels(*),iwk(*),nextdom
c-----------------------------------------------------------------------
c this routine performs a two-way partitioning of a graph using
c level sets recursively. First a coarse set is found by a
c simple cuthill-mc Kee type algorithm. Them each of the large
c domains is further partitioned into subsets using the same
c technique. The ip1 and ip2 parameters indicate the desired number
c number of partitions 'in each direction'. So the total number of
c partitions on return ought to be equal (or close) to ip1*ip2
c----------------------parameters----------------------------------------
c on entry:
c---------
c n = row dimension of matrix == number of vertices in graph
c ja, ia = pattern of matrix in CSR format (the ja,ia arrays of csr data
c structure)
c ip1 = integer indicating the number of large partitions ('number of
c paritions in first direction')
c ip2 = integer indicating the number of smaller partitions, per
c large partition, ('number of partitions in second direction')
c nfirst = number of nodes in the first level that is input in riord
c riord = (also an ouput argument). on entry riord contains the labels
c of the nfirst nodes that constitute the first level.
c on return:
c-----------
c ndom = total number of partitions found
c map = list of nodes listed partition by pertition from partition 1
c to paritition ndom.
c mapptr = pointer array for map. All nodes from position
c k1=mapptr(idom),to position k2=mapptr(idom+1)-1 in map belong
c to partition idom.
c work arrays:
c-------------
c mask = array of length n, used to hold the partition number of each
c node for the first (large) partitioning.
c mask is also used as a marker of visited nodes.
c levels = integer array of length .le. n used to hold the pointer
c arrays for the various level structures obtained from BFS.
c-----------------------------------------------------------------------
integer n, j,idom,kdom,jdom,maskval,k,nlev,init,ndp1,numnod
maskval = 1
do j=1, n
mask(j) = maskval
enddo
iwk(1) = 0
call BFS(n,ja,ia,nfirst,iwk,mask,maskval,riord,levels,nlev)
c init = riord(1)
c call perphn (ja,ia,mask,maskval,init,nlev,riord,levels)
call stripes (nlev,riord,levels,ip1,map,mapptr,ndom)
c-----------------------------------------------------------------------
if (ip2 .eq. 1) return
ndp1 = ndom+1
c
c pack info into array iwk
c
do j = 1, ndom+1
iwk(j) = ndp1+mapptr(j)
enddo
do j=1, mapptr(ndom+1)-1
iwk(ndp1+j) = map(j)
enddo
c-----------------------------------------------------------------------
do idom=1, ndom
do k=mapptr(idom),mapptr(idom+1)-1
mask(map(k)) = idom
enddo
enddo
nextdom = 1
c
c jdom = counter for total number of (small) subdomains
c
jdom = 1
mapptr(jdom) = 1
c-----------------------------------------------------------------------
do idom =1, ndom
maskval = idom
nfirst = 1
numnod = iwk(idom+1) - iwk(idom)
j = iwk(idom)
init = iwk(j)
nextdom = mapptr(jdom)
call perphn(numnod,ja,ia,init,iwk(j),mask,maskval,
* nlev,riord,levels)
call stripes (nlev,riord,levels,ip2,map(nextdom),
* mapptr(jdom),kdom)
mapptr(jdom) = nextdom
do j = jdom,jdom+kdom-1
mapptr(j+1) = nextdom + mapptr(j+1)-1
enddo
jdom = jdom + kdom
enddo
c
ndom = jdom - 1
return
end
c-----------------------------------------------------------------------
subroutine perphn(n,ja,ia,init,iperm,mask,maskval,nlev,riord,
* levels)
implicit none
integer n,ja(*),ia(*),init,iperm(*),mask(*),maskval,
* nlev,riord(*),levels(*)
c-----------------------------------------------------------------------
c finds a pseudo-peripheral node and does a BFS search from it.
c-----------------------------------------------------------------------
c see routine dblstr for description of parameters
c input:
c-------
c ja, ia = list pointer array for the adjacency graph
c mask = array used for masking nodes -- see maskval
c maskval = value to be checked against for determing whether or
c not a node is masked. If mask(k) .ne. maskval then
c node k is not considered.
c init = init node in the pseudo-peripheral node algorithm.
c
c output:
c-------
c init = actual pseudo-peripherial node found.
c nlev = number of levels in the final BFS traversal.
c riord =
c levels =
c-----------------------------------------------------------------------
integer j,nlevp,deg,nfirst,mindeg,nod,maskdeg
nlevp = 0
1 continue
riord(1) = init
nfirst = 1
call BFS(n,ja,ia,nfirst,iperm,mask,maskval,riord,levels,nlev)
if (nlev .gt. nlevp) then
mindeg = levels(nlev+1)-1
do j=levels(nlev),levels(nlev+1)-1
nod = riord(j)
deg = maskdeg(ja,ia,nod,mask,maskval)
if (deg .lt. mindeg) then
init = nod
mindeg = deg
endif
enddo
nlevp = nlev
goto 1
endif
return
end
c-----------------------------------------------------------------------
subroutine add_lvst(istart,iend,nlev,riord,ja,ia,mask,maskval)
integer nlev, nod, riord(*), ja(*), ia(*), mask(*)
c----------------------------------------------------------------------
c adds one level set to the previous sets. span all nodes of previous
c set. Uses Mask to mark those already visited.
c-----------------------------------------------------------------------
nod = iend
do 25 ir = istart+1,iend
i = riord(ir)
do 24 k=ia(i),ia(i+1)-1
j = ja(k)
if (mask(j) .eq. maskval) then
nod = nod+1
mask(j) = 0
riord(nod) = j
endif
24 continue
25 continue
istart = iend
iend = nod
return
c-----------------------------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine stripes (nlev,riord,levels,ip,map,mapptr,ndom)
implicit none
integer nlev,riord(*),levels(nlev+1),ip,map(*),
* mapptr(*), ndom
c-----------------------------------------------------------------------
c this is a post processor to BFS. stripes uses the output of BFS to
c find a decomposition of the adjacency graph by stripes. It fills
c the stripes level by level until a number of nodes .gt. ip is
c is reached.
c---------------------------parameters-----------------------------------
c on entry:
c --------
c nlev = number of levels as found by BFS
c riord = reverse permutation array produced by BFS --
c levels = pointer array for the level structure as computed by BFS. If
c lev is a level number, and k1=levels(lev),k2=levels(lev+1)-1,
c then all the nodes of level number lev are:
c riord(k1),riord(k1+1),...,riord(k2)
c ip = number of desired partitions (subdomains) of about equal size.
c
c on return
c ---------
c ndom = number of subgraphs (subdomains) found
c map = node per processor list. The nodes are listed contiguously
c from proc 1 to nproc = mpx*mpy.
c mapptr = pointer array for array map. list for proc. i starts at
c mapptr(i) and ends at mapptr(i+1)-1 in array map.
c-----------------------------------------------------------------------
c local variables.
c
integer ib,ktr,ilev,k,nsiz,psiz
ndom = 1
ib = 1
c to add: if (ip .le. 1) then ...
nsiz = levels(nlev+1) - levels(1)
psiz = (nsiz-ib)/max(1,(ip - ndom + 1)) + 1
mapptr(ndom) = ib
ktr = 0
do 10 ilev = 1, nlev
c
c add all nodes of this level to domain
c
do 3 k=levels(ilev), levels(ilev+1)-1
map(ib) = riord(k)
ib = ib+1
ktr = ktr + 1
if (ktr .ge. psiz .or. k .ge. nsiz) then
ndom = ndom + 1
mapptr(ndom) = ib
psiz = (nsiz-ib)/max(1,(ip - ndom + 1)) + 1
ktr = 0
endif
c
3 continue
10 continue
ndom = ndom-1
return
c-----------------------------------------------------------------------
c-----end-of-stripes----------------------------------------------------
end
c-----------------------------------------------------------------------
subroutine rversp (n, riord)
integer n, riord(n)
c-----------------------------------------------------------------------
c this routine does an in-place reversing of the permutation array
c riord --
c-----------------------------------------------------------------------
integer j, k
do 26 j=1,n/2
k = riord(j)
riord(j) = riord(n-j+1)
riord(n-j+1) = k
26 continue
return
end
c-----------------------------------------------------------------------
integer function maskdeg (ja,ia,nod,mask,maskval)
implicit none
integer ja(*),ia(*),nod,mask(*),maskval
c-----------------------------------------------------------------------
integer deg, k
deg = 0
do k =ia(nod),ia(nod+1)-1
if (mask(ja(k)) .eq. maskval) deg = deg+1
enddo
maskdeg = deg
return
end
c-----------------------------------------------------------------------
|