File: reordering.f

package info (click to toggle)
getdp 3.0.4%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 10,856 kB
  • sloc: cpp: 63,020; fortran: 13,955; yacc: 9,350; f90: 1,640; lex: 799; makefile: 55; ansic: 34; awk: 33; sh: 23
file content (391 lines) | stat: -rw-r--r-- 15,465 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
c $Id: reordering.f,v 1.1 2008-04-11 06:01:06 geuzaine Exp $
c----------------------------------------------------------------------c
c                          S P A R S K I T                             c
c----------------------------------------------------------------------c
c               ROERDERING ROUTINES -- LEVEL SET BASED ROUTINES        c
c----------------------------------------------------------------------c
c BSF     : Breadth-First Seearch traversal (Cuthill mc kee ordering)  c
c dblstr  : two-way dissection partitioning -- with equal size domains c
c stripes : routine used by dblstr to assign points                    c
c perphn  : finds a peripheral node and does a BFS search from it.     c
c add_lvst: routine for adding a new level set in BFS algorithm        c
c reversp : routine to reverse a given permuation (e.g., for RCMK)     c
c maskdeg : integer function to compute the `masked' of a node         c
c----------------------------------------------------------------------c
      subroutine BFS(n,ja,ia,nfirst,iperm,mask,maskval,riord,levels,
     *     nlev)
      implicit none 
      integer n,ja(*),ia(*),nfirst,iperm(n),mask(n),riord(*),levels(*),
     *     nlev,maskval 
c-----------------------------------------------------------------------
c finds the level-structure (breadth-first-search or CMK) ordering for a
c given sparse matrix. Uses add_lvst. Allows a  set of nodes to be 
c the initial level (instead of just one node). Allows masked nodes.
c-------------------------parameters------------------------------------
c on entry:
c----------
c n      = number of nodes in the graph 
c ja, ia = pattern of matrix in CSR format (the ja,ia arrays of csr data
c          structure)
c nfirst = number of nodes in the first level that is input in riord
c iperm  = integer array indicating in which order to  traverse the graph
c          in order to generate all connected components. 
c          The nodes will be traversed in order iperm(1),....,iperm(n) 
c          Convention: 
c          if iperm(1) .eq. 0 on entry then BFS will traverse the 
c          nodes in the  order 1,2,...,n. 
c 
c riord  = (also an ouput argument). on entry riord contains the labels  
c          of the nfirst nodes that constitute the first level.      
c 
c mask   = array used to indicate whether or not a node should be 
c          condidered in the graph. see maskval.
c          mask is also used as a marker of  visited nodes. 
c 
c maskval= consider node i only when:  mask(i) .eq. maskval 
c          maskval must be .gt. 0. 
c          thus, to consider all nodes, take mask(1:n) = 1. 
c          maskval=1 (for example) 
c 
c on return
c ---------
c mask   = on return mask is restored to its initial state. 
c riord  = `reverse permutation array'. Contains the labels of the nodes
c          constituting all the levels found, from the first level to
c          the last. 
c levels = pointer array for the level structure. If lev is a level
c          number, and k1=levels(lev),k2=levels(lev+1)-1, then
c          all the nodes of level number lev are:
c          riord(k1),riord(k1+1),...,riord(k2) 
c nlev   = number of levels found
c-----------------------------------------------------------------------
c Notes on possible usage
c-------------------------
c 1. if you want a CMK ordering from a known node, say node init then
c    call BFS with nfirst=1,iperm(1) =0, mask(1:n) =1, maskval =1, 
c    riord(1) = init.
c 2. if you want the RCMK ordering and you have a preferred initial node
c     then use above call followed by reversp(n,riord)
c 3. Similarly to 1, and 2, but you know a good LEVEL SET to start from
c    (nfirst = number if nodes in the level, riord(1:nfirst) contains 
c    the nodes. 
c 4. If you do not know how to select a good initial node in 1 and 2, 
c    then you should use perphn instead. 
c
c-----------------------------------------------------------------------
c     local variables -- 
      integer j, ii, nod, istart, iend 
      logical permut
      permut = (iperm(1) .ne. 0) 
c     
c     start pointer structure to levels 
c     
      nlev   = 0 
c     
c     previous end
c     
      istart = 0 
      ii = 0
c     
c     current end 
c     
      iend = nfirst
c     
c     intialize masks to zero -- except nodes of first level -- 
c     
      do 12 j=1, nfirst 
         mask(riord(j)) = 0 
 12   continue
c-----------------------------------------------------------------------
 13   continue 
c     
 1    nlev = nlev+1
      levels(nlev) = istart + 1
      call add_lvst (istart,iend,nlev,riord,ja,ia,mask,maskval) 
      if (istart .lt. iend) goto 1
 2    ii = ii+1 
      if (ii .le. n) then
         nod = ii         
         if (permut) nod = iperm(nod)          
         if (mask(nod) .eq. maskval) then
c     
c     start a new level
c
            istart = iend
            iend = iend+1 
            riord(iend) = nod
            mask(nod) = 0
            goto 1
         else 
            goto 2
         endif
      endif
c----------------------------------------------------------------------- 
 3    levels(nlev+1) = iend+1 
      do j=1, iend
         mask(riord(j)) = maskval 
      enddo
      return
c----------------------------------------------------------------------- 
c-----end-of-BFS--------------------------------------------------------
      end
c-----------------------------------------------------------------------
      subroutine dblstr(n,ja,ia,ip1,ip2,nfirst,riord,ndom,map,mapptr,
     *     mask,levels,iwk) 
      implicit none
      integer ndom,ja(*),ia(*),ip1,ip2,nfirst,riord(*),map(*),mapptr(*),
     *     mask(*),levels(*),iwk(*),nextdom
c-----------------------------------------------------------------------
c this routine performs a two-way partitioning of a graph using 
c level sets recursively. First a coarse set is found by a
c simple cuthill-mc Kee type algorithm. Them each of the large
c domains is further partitioned into subsets using the same 
c technique. The ip1 and ip2 parameters indicate the desired number 
c number of partitions 'in each direction'. So the total number of
c partitions on return ought to be equal (or close) to ip1*ip2 
c----------------------parameters----------------------------------------
c on entry: 
c---------
c n      = row dimension of matrix == number of vertices in graph
c ja, ia = pattern of matrix in CSR format (the ja,ia arrays of csr data
c          structure)
c ip1    = integer indicating the number of large partitions ('number of
c          paritions in first direction') 
c ip2    = integer indicating the number of smaller partitions, per 
c          large partition, ('number of partitions in second direction') 
c nfirst = number of nodes in the first level that is input in riord 
c riord  = (also an ouput argument). on entry riord contains the labels  
c          of the nfirst nodes that constitute the first level.   
c on return:
c-----------
c ndom   = total number of partitions found 
c map    = list of nodes listed partition by pertition from partition 1
c          to paritition ndom.
c mapptr = pointer array for map. All nodes from position 
c          k1=mapptr(idom),to position k2=mapptr(idom+1)-1 in map belong
c          to partition idom.
c work arrays:
c-------------
c mask   = array of length n, used to hold the partition number of each 
c          node for the first (large) partitioning. 
c          mask is also used as a marker of  visited nodes. 
c levels = integer array of length .le. n used to hold the pointer 
c          arrays for the various level structures obtained from BFS. 
c-----------------------------------------------------------------------
      integer n, j,idom,kdom,jdom,maskval,k,nlev,init,ndp1,numnod
      maskval = 1 
      do j=1, n
         mask(j) = maskval 
      enddo
      iwk(1) = 0 
      call BFS(n,ja,ia,nfirst,iwk,mask,maskval,riord,levels,nlev)      
c      init = riord(1) 
c      call perphn (ja,ia,mask,maskval,init,nlev,riord,levels) 
      call stripes (nlev,riord,levels,ip1,map,mapptr,ndom)
c-----------------------------------------------------------------------
      if (ip2 .eq. 1) return      
      ndp1 = ndom+1
c     
c     pack info into array iwk 
c 
      do j = 1, ndom+1
         iwk(j) = ndp1+mapptr(j)  
      enddo
      do j=1, mapptr(ndom+1)-1
         iwk(ndp1+j) = map(j) 
      enddo
c----------------------------------------------------------------------- 
      do idom=1, ndom 
         do k=mapptr(idom),mapptr(idom+1)-1 
            mask(map(k)) = idom
         enddo
      enddo
      nextdom = 1 
c
c     jdom = counter for total number of (small) subdomains 
c     
      jdom = 1
      mapptr(jdom) = 1 
c----------------------------------------------------------------------- 
      do idom =1, ndom
         maskval = idom
         nfirst = 1
         numnod = iwk(idom+1) - iwk(idom) 
         j = iwk(idom) 
         init = iwk(j) 
         nextdom = mapptr(jdom) 
         call perphn(numnod,ja,ia,init,iwk(j),mask,maskval,
     *        nlev,riord,levels)
         call stripes (nlev,riord,levels,ip2,map(nextdom),
     *        mapptr(jdom),kdom)
         mapptr(jdom) = nextdom
         do j = jdom,jdom+kdom-1
            mapptr(j+1) = nextdom + mapptr(j+1)-1
         enddo
         jdom = jdom + kdom
      enddo
c
      ndom = jdom - 1
      return
      end 
c-----------------------------------------------------------------------
      subroutine perphn(n,ja,ia,init,iperm,mask,maskval,nlev,riord,
     *     levels) 
      implicit none
      integer n,ja(*),ia(*),init,iperm(*),mask(*),maskval,
     *     nlev,riord(*),levels(*)
c-----------------------------------------------------------------------
c     finds a pseudo-peripheral node and does a BFS search from it. 
c-----------------------------------------------------------------------
c see routine  dblstr for description of parameters
c input: 
c------- 
c ja, ia  = list pointer array for the adjacency graph 
c mask    = array used for masking nodes -- see maskval 
c maskval = value to be checked against for determing whether or
c           not a node is masked. If mask(k) .ne. maskval then
c           node k is not considered. 
c init    = init node in the pseudo-peripheral node algorithm. 
c
c output:
c-------
c init    = actual pseudo-peripherial node found. 
c nlev    = number of levels in the final BFS traversal. 
c riord   =  
c levels  = 
c-----------------------------------------------------------------------
      integer j,nlevp,deg,nfirst,mindeg,nod,maskdeg
      nlevp = 0 
 1    continue
      riord(1) = init
      nfirst = 1 
      call BFS(n,ja,ia,nfirst,iperm,mask,maskval,riord,levels,nlev)
      if (nlev .gt. nlevp) then 
         mindeg = levels(nlev+1)-1
         do j=levels(nlev),levels(nlev+1)-1
            nod = riord(j) 
            deg = maskdeg(ja,ia,nod,mask,maskval)
            if (deg .lt. mindeg) then
               init = nod
               mindeg = deg
            endif 
         enddo
         nlevp = nlev 
         goto 1 
      endif
      return
      end
c-----------------------------------------------------------------------
      subroutine add_lvst(istart,iend,nlev,riord,ja,ia,mask,maskval) 
      integer nlev, nod, riord(*), ja(*), ia(*), mask(*) 
c---------------------------------------------------------------------- 
c adds one level set to the previous sets. span all nodes of previous 
c set. Uses Mask to mark those already visited. 
c----------------------------------------------------------------------- 
      nod = iend
      do 25 ir = istart+1,iend 
         i = riord(ir)		
         do 24 k=ia(i),ia(i+1)-1
            j = ja(k)
            if (mask(j) .eq. maskval) then
               nod = nod+1 
               mask(j) = 0
               riord(nod) = j
            endif 
 24      continue
 25   continue
      istart = iend 
      iend   = nod 
      return
c-----------------------------------------------------------------------
      end 
c----------------------------------------------------------------------- 
      subroutine stripes (nlev,riord,levels,ip,map,mapptr,ndom)
      implicit none
      integer nlev,riord(*),levels(nlev+1),ip,map(*),
     *    mapptr(*), ndom
c-----------------------------------------------------------------------
c    this is a post processor to BFS. stripes uses the output of BFS to 
c    find a decomposition of the adjacency graph by stripes. It fills 
c    the stripes level by level until a number of nodes .gt. ip is 
c    is reached. 
c---------------------------parameters-----------------------------------
c on entry: 
c --------
c nlev   = number of levels as found by BFS 
c riord  = reverse permutation array produced by BFS -- 
c levels = pointer array for the level structure as computed by BFS. If 
c          lev is a level number, and k1=levels(lev),k2=levels(lev+1)-1, 
c          then all the nodes of level number lev are:
c                      riord(k1),riord(k1+1),...,riord(k2) 
c  ip    = number of desired partitions (subdomains) of about equal size.
c 
c on return
c ---------
c ndom     = number of subgraphs (subdomains) found 
c map      = node per processor list. The nodes are listed contiguously
c            from proc 1 to nproc = mpx*mpy. 
c mapptr   = pointer array for array map. list for proc. i starts at 
c            mapptr(i) and ends at mapptr(i+1)-1 in array map.
c-----------------------------------------------------------------------
c local variables. 
c
      integer ib,ktr,ilev,k,nsiz,psiz 
      ndom = 1 
      ib = 1
c to add: if (ip .le. 1) then ...
      nsiz = levels(nlev+1) - levels(1) 
      psiz = (nsiz-ib)/max(1,(ip - ndom + 1)) + 1 
      mapptr(ndom) = ib 
      ktr = 0 
      do 10 ilev = 1, nlev
c
c     add all nodes of this level to domain
c     
         do 3 k=levels(ilev), levels(ilev+1)-1
            map(ib) = riord(k)
            ib = ib+1
            ktr = ktr + 1 
            if (ktr .ge. psiz  .or. k .ge. nsiz) then 
               ndom = ndom + 1
               mapptr(ndom) = ib 
               psiz = (nsiz-ib)/max(1,(ip - ndom + 1)) + 1 
               ktr = 0
            endif
c
 3       continue
 10   continue
      ndom = ndom-1
      return 
c-----------------------------------------------------------------------
c-----end-of-stripes----------------------------------------------------
      end
c----------------------------------------------------------------------- 
      subroutine rversp (n, riord) 
      integer n, riord(n) 
c-----------------------------------------------------------------------
c     this routine does an in-place reversing of the permutation array
c     riord -- 
c----------------------------------------------------------------------- 
      integer j, k 
      do 26 j=1,n/2
         k = riord(j) 
         riord(j) = riord(n-j+1)
         riord(n-j+1) = k 
 26   continue 
      return 
      end 
c----------------------------------------------------------------------- 
      integer function maskdeg  (ja,ia,nod,mask,maskval) 
      implicit none 
      integer ja(*),ia(*),nod,mask(*),maskval
c-----------------------------------------------------------------------
      integer deg, k 
      deg = 0
      do k =ia(nod),ia(nod+1)-1
         if (mask(ja(k)) .eq. maskval) deg = deg+1 
      enddo
      maskdeg = deg 
      return
      end 
c-----------------------------------------------------------------------