File: cylindrical_wallout.f90

package info (click to toggle)
getdp 3.0.4%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 10,856 kB
  • sloc: cpp: 63,020; fortran: 13,955; yacc: 9,350; f90: 1,640; lex: 799; makefile: 55; ansic: 34; awk: 33; sh: 23
file content (92 lines) | stat: -rwxr-xr-x 3,585 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
! cylindrical_cavity This program computes particular solutions to
! the elastic wave equation in cylindrical geometries,
! see: https://bitbucket.org/appelo/pewe
!
! Copyright (C) 2015 Kristoffer Virta & Daniel Appelo
!
!  This program is free software: you can redistribute it and/or modify
!  it under the terms of the GNU General Public License as published by
!  the Free Software Foundation, either version 3 of the License, or
!  (at your option) any later version.
!
!  This program is distributed in the hope that it will be useful,
!  but WITHOUT ANY WARRANTY; without even the implied warranty of
!  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!  GNU General Public License for more dksils.
!
!  You should have received a copy of the GNU General Public License
!  along with this program.  If not, see <http://www.gnu.org/licenses/>.
!
!  Modified by Vanessa Mattesi for inclusion in GetDP:
!
!  Exact solution for a cylindrical wall (zero displacement on the
!  boundary) for a pressure incident wave.

subroutine cylindrical_wallout(du,dv,dut,dvt,X,Y,t,omega,lambda,mu,rho,a)

  implicit none
  double precision :: x,y,du,dv,dvt,dut,t
  double precision :: r,theta
  double precision :: lambda,mu,rho
  double precision :: cp,cs,omega,kp,ks,a
  double precision :: phi_0,epsilon_n
  double complex   :: m11,m12,m21,m22,An,Bn,f_1,f_2
  double complex   :: p,q
  integer :: n,ns
  double precision , parameter :: pi = 4d0*datan(1d0)
  
  double complex, external :: besselh  !besselh(order n,kind 1 or 2,k*r) Hankel function of order n of the first or second kind of argument (kr)
  double complex, external :: dr_h     !dr_h(kind 1 or 2,k,r,n) derivative of the Hankel function of order n of the first or second kind of argument (kr)
  double complex, external :: dr_j     !dr_j(k,r,n) derivative of the bessel function of first kind of order n of argument (kr)

  ! Compute radius r and angle theta
  r = sqrt(X**2+Y**2);
  theta = atan2(Y,X);
  ! P and S wave speeds
  cp = sqrt((lambda+2.d0*mu)/rho);
  cs = sqrt(mu/rho);
  ! To satisfy elastic wave equation
  kp = omega/cp;
  ks = omega/cs;
  ! Amplitude of incomming wave
  phi_0 = 1.d0;
  ! size of the series
  ns = 2*FLOOR(omega);
  !-------------------------------
  ! Series expansion of solution -
  !-------------------------------
  ! initialisation of the radial and azimutal part of the solution
  p=0.d0;
  q=0.d0;
!$OMP PARALLEL DO PRIVATE(f_1,f_2,epsilon_n,n,m11,m12,m21,m22,An,Bn) REDUCTION(+:p,q)
  do n = 0,ns
    If(n.eq.0) Then
      epsilon_n = 1.d0;
      elseIf (n>0) Then
      epsilon_n = 2.d0;
    Endif

    m11 = dr_h(1,kp,a,n);
    m12 = (dble(n)/a)*besselh(int(n),1,ks*a);
    m21 =-(dble(n)/a)*besselh(int(n),1,kp*a);
    m22 =-dr_h(1,ks,a,n);

    f_1 =-phi_0*epsilon_n*((0.d0,-1.d0)**n) *dr_j(kp,a,n);
    f_2 = phi_0*epsilon_n*((0.d0,-1.d0)**n) *(dble(n)/a)*besjn(n,kp*a);

    An = 1.d0/(m11*m22 - m12*m21)*( m22*f_1-m12*f_2);
    Bn = 1.d0/(m11*m22 - m12*m21)*(-m21*f_1+m11*f_2);  

    p = p+ ( An*dr_h(1,kp,r,n) + Bn*(dble(n)/r)*besselh(int(n),1,ks*r)) *cos(n*theta);
    q = q+ (-An*(dble(n)/r)*besselh(int(n),1,kp*r) - Bn*dr_h(1,ks,r,n)) *sin(n*theta);

  end do
!$OMP END PARALLEL DO
  ! return real part in du, dv
  du = dreal(exp(omega*(0.d0,1.d0)*t)*(cos(theta)*p-sin(theta)*q))
  dv = dreal(exp(omega*(0.d0,1.d0)*t)*(sin(theta)*p+cos(theta)*q))
  ! return imaginary part in dut, dvt
  dut = dimag(exp(omega*(0.d0,1.d0)*t)*(cos(theta)*p-sin(theta)*q))
  dvt = dimag(exp(omega*(0.d0,1.d0)*t)*(sin(theta)*p+cos(theta)*q))

end subroutine cylindrical_wallout