1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|
! surface_wave_convex This program computes particular solutions to
! the elastic wave equation in cylindrical geometries,
! see: https://bitbucket.org/appelo/pewe
!
! Copyright (C) 2015 Kristoffer Virta & Daniel Appelo
!
!
! This program is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program. If not, see <http://www.gnu.org/licenses/>.
subroutine surface_wave_convex(du,dv,dut,dvt,X,Y,t,mu,c,bi)
implicit none
double precision :: x,y,du,dv,dvt,dut,t,mu,c,bi,lambda
double precision :: r
double complex :: B,q1,q2,v1,v2,q,v
integer, parameter :: n = 6
double precision , parameter :: pi = acos(-1.d0)
double precision :: omega,rho,A,sigma,alpha,beta,ka,kb
double complex, external :: besselh
lambda = 1.d0
A = 1.d0
rho = 1.d0
B = (0.d0,1.d0)*bi
omega = dble(n)*c
r = sqrt(X**2+Y**2)
sigma = atan2(Y,X)
alpha = sqrt((lambda+2.d0*mu)/rho)
beta = sqrt(mu/rho)
Ka = omega/alpha
Kb = omega/beta
q1 = A*Ka/2.d0*(bessel_jn(n-1,Ka*r)-bessel_jn(n+1,Ka*r))
v2 = -B*Kb/2.d0*(bessel_jn(n-1,Kb*r)-bessel_jn(n+1,Kb*r))
if (r.lt.1.d-12) then
q2 = 0.d0*(0.d0,1.d0)
v1 = 0.d0*(0.d0,1.d0)
else
q2 = B*(0.d0,1.d0)*(dble(n)/r)*bessel_jn(n,Kb*r)
v1 = A*(0.d0,1.d0)*(dble(n)/r)*bessel_jn(n,Ka*r)
end if
Q = (q1+q2)
V = (v1+v2)
du = real((cos(sigma)*Q-sin(sigma)*V)*exp((0.d0,1.d0)*(omega*t+n*sigma)))
dv = real((sin(sigma)*Q+cos(sigma)*V)*exp((0.d0,1.d0)*(omega*t+n*sigma)))
dut = real(omega*(0.d0,1.d0)*(cos(sigma)*Q-sin(sigma)*V)*exp((0.d0,1.d0)*(omega*t+n*sigma)))
dvt = real(omega*(0.d0,1.d0)*(sin(sigma)*Q+cos(sigma)*V)*exp((0.d0,1.d0)*(omega*t+n*sigma)))
end subroutine surface_wave_convex
|