1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|
! surface_waves_concave This program computes particular solutions to
! the elastic wave equation in cylindrical geometries,
! see: https://bitbucket.org/appelo/pewe
!
! Copyright (C) 2015 Kristoffer Virta & Daniel Appelo
!
!
! This program is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program. If not, see <http://www.gnu.org/licenses/>.
subroutine surface_waves_concave(du,dv,dut,dvt,X,Y,t,nmode,c,B)
!
implicit none
integer :: nmode
double precision :: x,y,du,dv,dvt,dut,t
double precision :: r
double complex :: B,q1,q2,v1,v2,q,v,c,ka,kb,omega
double precision , parameter :: pi = acos(-1.d0)
double precision :: A,sigma,alpha,beta,lambda,mu,rho
integer, parameter :: n = 10
integer :: nm,np
double precision :: ZR, ZI, FNU
double precision :: CYRP(n), CYRM(n),cyr(n),CYI(n)
integer :: KODE, M, NZ, IERR
r = dsqrt(X**2+Y**2)
sigma = atan2(Y,X)
rho = 1.d0
lambda = 1.d0
mu = 1.d0
omega = dble(nmode)*c
alpha = dsqrt((lambda+2.d0*mu)/rho)
beta = dsqrt(mu/rho)
Ka = omega/alpha
Kb = omega/beta
A = 1.d0
FNU = 0.d0
KODE = 1
M = 2
nm = nmode-1
np = nmode+1
ZR = dreal(Ka*r)
ZI = dimag(Ka*r)
call ZBESH(ZR, ZI, FNU, KODE, M, n, CYR, CYI, NZ, IERR)
q1 = A*Ka/2.d0*(dcmplx(cyr(nm+1),cyi(nm+1))-dcmplx(cyr(np+1),cyi(np+1)))
v1 = A*(0.d0,1.d0)*(dble(nmode)/r)*dcmplx(cyr(nmode+1),cyi(nmode+1))
ZR = dreal(Kb*r)
ZI = dimag(Kb*r)
call ZBESH(ZR, ZI, FNU, KODE, M, n, CYR, CYI, NZ, IERR)
q2 = B*(0.d0,1.d0)*(dble(nmode)/r)*dcmplx(cyr(nmode+1),cyi(nmode+1))
v2 = -B*Kb/2.d0*(dcmplx(cyr(nm+1),cyi(nm+1))-dcmplx(cyr(np+1),cyi(np+1)))
Q = (q1+q2)
V = (v1+v2)
du = dreal((cos(sigma)*Q-sin(sigma)*V)*zexp((0.d0,1.d0)*(omega*t+dble(nmode)*sigma)))
dv = dreal((sin(sigma)*Q+cos(sigma)*V)*zexp((0.d0,1.d0)*(omega*t+dble(nmode)*sigma)))
dut = real(omega*(0.d0,1.d0)*(cos(sigma)*Q-sin(sigma)*V)*&
exp((0.d0,1.d0)*(omega*t+dble(nmode)*sigma)))
dvt = real(omega*(0.d0,1.d0)*(sin(sigma)*Q+cos(sigma)*V)*&
exp((0.d0,1.d0)*(omega*t+dble(nmode)*sigma)))
end subroutine surface_waves_concave
|