1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
// Lib_Elasticity_u.pro
//
// Template library for elastostatics, elastodynamics and modal analysis using a
// displacement (u) formulation, in both 2D (plane stress or plain strain) and
// 3D.
// Default definitions of constants, groups and functions that can/should be
// redefined from outside the template:
DefineConstant[
modelPath = "", // default path of the model
resPath = StrCat[modelPath, "res/"], // path for post-operation files
modelDim = 2, // default model dimension (2D)
Flag_PlaneStress = 0, // plain stress in 2D?
Flag_Regime = 0, // static (0), harmonic (1), time-domain (2), modal (3)
Freq = 1, // frequency (for harmonic simulations)
Freq_Target = 1, // frequency target (for modal simulations)
Num_Modes = 10, // number of modes (for modal simulations)
TimeInit = 0, // intial time (for time-domain simulations)
TimeFinal = 1/50, // final time (for time-domain simulations)
DeltaTime = 1/500, // time step (for time-domain simulations)
Flag_Axi = 0, // axisymmetric model?
FE_Order = 1 // finite element order
];
Group {
DefineGroup[
// Full elastic domain:
Vol_Mec,
// Subsets of Vol_Mec:
Vol_F_Mec, // region with imposed force
// Boundaries:
Sur_Neu_Mec // surfaces with Neumann boundary conditions (pressure)
];
Dom_Mec = Region[ {Vol_Mec, Sur_Neu_Mec} ];
}
Function{
DefineFunction[
E, // Young modulus (in Vol_Mec)
nu, // Poisson coefficient (in Vol_Mec)
rho, // mass density (in Vol_Mec)
f, // force per unit volume (in Vol_Force_Mec)
sigman // traction (on Sur_Neu_Mec)
];
}
// End of definitions.
Jacobian {
{ Name Vol;
Case {
If(Flag_Axi && modelDim < 3)
{ Region All; Jacobian VolAxiSqu; }
Else
{ Region All; Jacobian Vol; }
EndIf
}
}
{ Name Sur;
Case {
If(Flag_Axi && modelDim < 3)
{ Region All; Jacobian SurAxi; }
Else
{ Region All; Jacobian Sur; }
EndIf
}
}
}
Integration {
{ Name Int;
Case {
{ Type Gauss;
Case {
{ GeoElement Point; NumberOfPoints 1; }
{ GeoElement Line; NumberOfPoints 3; }
{ GeoElement Triangle; NumberOfPoints 3; }
{ GeoElement Quadrangle; NumberOfPoints 4; }
{ GeoElement Tetrahedron; NumberOfPoints 4; }
{ GeoElement Hexahedron; NumberOfPoints 6; }
{ GeoElement Prism; NumberOfPoints 9; }
{ GeoElement Pyramid; NumberOfPoints 8; }
}
}
}
}
}
Function {
If(Flag_PlaneStress) // plane stress (EPC)
a[] = E[]/(1.-nu[]^2);
c[] = E[]*nu[]/(1.-nu[]^2);
Else // plane strain (EPD) or 3D
a[] = E[]*(1.-nu[])/(1.+nu[])/(1.-2.*nu[]);
c[] = E[]*nu[]/(1.+nu[])/(1.-2.*nu[]);
EndIf
b[] = E[]/2./(1.+nu[]); // = mu = G
C_xx[] = Tensor[ a[],0 ,0 , 0 ,b[],0 , 0 ,0 ,b[] ];
C_xy[] = Tensor[ 0 ,c[],0 , b[],0 ,0 , 0 ,0 ,0 ];
C_xz[] = Tensor[ 0 ,0 ,c[], 0 ,0 ,0 , b[],0 ,0 ];
C_yx[] = Tensor[ 0 ,b[],0 , c[],0 ,0 , 0 ,0 ,0 ];
C_yy[] = Tensor[ b[],0 ,0 , 0 ,a[],0 , 0 ,0 ,b[] ];
C_yz[] = Tensor[ 0 ,0 ,0 , 0 ,0 ,c[], 0 ,b[],0 ];
C_zx[] = Tensor[ 0 ,0 ,b[], 0 ,0 ,0 , c[],0 ,0 ];
C_zy[] = Tensor[ 0 ,0 ,0 , 0 ,0 ,b[], 0 ,c[],0 ];
C_zz[] = Tensor[ b[],0 ,0 , 0 ,b[],0 , 0 ,0 ,a[] ];
}
FunctionSpace {
{ Name H_ux_Mec; Type Form0;
BasisFunction {
{ Name sxn; NameOfCoef uxn; Function BF_Node;
Support Dom_Mec; Entity NodesOf[ All ]; }
If(FE_Order == 2)
{ Name sxn2; NameOfCoef uxn2; Function BF_Node_2E;
Support Dom_Mec; Entity EdgesOf[ All ]; }
EndIf
}
Constraint {
{ NameOfCoef uxn; EntityType NodesOf; NameOfConstraint Displacement_x; }
If(FE_Order == 2)
{ NameOfCoef uxn2; EntityType EdgesOf; NameOfConstraint Displacement_x; }
EndIf
}
}
{ Name H_uy_Mec; Type Form0;
BasisFunction {
{ Name syn; NameOfCoef uyn; Function BF_Node;
Support Dom_Mec; Entity NodesOf[ All ]; }
If(FE_Order == 2)
{ Name syn2; NameOfCoef uyn2; Function BF_Node_2E;
Support Dom_Mec; Entity EdgesOf[ All ]; }
EndIf
}
Constraint {
{ NameOfCoef uyn; EntityType NodesOf; NameOfConstraint Displacement_y; }
If(FE_Order == 2)
{ NameOfCoef uyn2; EntityType EdgesOf; NameOfConstraint Displacement_y; }
EndIf
}
}
{ Name H_uz_Mec; Type Form0;
BasisFunction {
{ Name syn; NameOfCoef uzn; Function BF_Node;
Support Dom_Mec; Entity NodesOf[ All ]; }
If(FE_Order == 2)
{ Name szn2; NameOfCoef uzn2; Function BF_Node_2E;
Support Dom_Mec; Entity EdgesOf[ All ]; }
EndIf
}
Constraint {
{ NameOfCoef uzn; EntityType NodesOf; NameOfConstraint Displacement_z; }
If(FE_Order == 2)
{ NameOfCoef uzn2; EntityType EdgesOf; NameOfConstraint Displacement_z; }
EndIf
}
}
}
Formulation {
{ Name Elasticity_u; Type FemEquation;
Quantity {
{ Name ux; Type Local; NameOfSpace H_ux_Mec; }
{ Name uy; Type Local; NameOfSpace H_uy_Mec; }
If(modelDim == 3)
{ Name uz; Type Local; NameOfSpace H_uz_Mec; }
EndIf
}
Equation {
Integral { [ -C_xx[] * Dof{d ux}, {d ux} ];
In Vol_Mec; Jacobian Vol; Integration Int; }
Integral { [ -C_xy[] * Dof{d uy}, {d ux} ];
In Vol_Mec; Jacobian Vol; Integration Int; }
If(modelDim == 3)
Integral { [ -C_xz[] * Dof{d uz}, {d ux} ];
In Vol_Mec; Jacobian Vol; Integration Int; }
EndIf
Integral { [ -C_yx[] * Dof{d ux}, {d uy} ];
In Vol_Mec; Jacobian Vol; Integration Int; }
Integral { [ -C_yy[] * Dof{d uy}, {d uy} ];
In Vol_Mec; Jacobian Vol; Integration Int; }
If(modelDim == 3)
Integral { [ -C_yz[] * Dof{d uz}, {d uy} ];
In Vol_Mec; Jacobian Vol; Integration Int; }
EndIf
If(modelDim == 3)
Integral { [ -C_zx[] * Dof{d ux}, {d uz} ];
In Vol_Mec; Jacobian Vol; Integration Int; }
Integral { [ -C_zy[] * Dof{d uy}, {d uz} ];
In Vol_Mec; Jacobian Vol; Integration Int; }
Integral { [ -C_zz[] * Dof{d uz}, {d uz} ];
In Vol_Mec; Jacobian Vol; Integration Int; }
EndIf
If(Flag_Regime)
Integral { DtDtDof [ -rho[] * Dof{ux} , {ux} ];
In Vol_Mec ; Jacobian Vol ; Integration Int ; }
Integral { DtDtDof [ -rho[] * Dof{uy} , {uy} ];
In Vol_Mec ; Jacobian Vol ; Integration Int ; }
If(modelDim == 3)
Integral { DtDtDof [ -rho[] * Dof{uz} , {uz} ];
In Vol_Mec ; Jacobian Vol ; Integration Int ; }
EndIf
EndIf
If(Flag_Regime != 3)
Integral { [ CompX[f[]] , {ux} ];
In Vol_F_Mec; Jacobian Vol; Integration Int; }
Integral { [ CompY[f[]] , {uy} ];
In Vol_F_Mec; Jacobian Vol; Integration Int; }
If(modelDim == 3)
Integral { [ CompZ[f[]] , {uy} ];
In Vol_F_Mec; Jacobian Vol; Integration Int; }
EndIf
Integral { [ CompX[sigman[]] , {ux} ];
In Sur_Neu_Mec; Jacobian Sur; Integration Int; }
Integral { [ CompY[sigman[]] , {uy} ];
In Sur_Neu_Mec; Jacobian Sur; Integration Int; }
If(modelDim == 3)
Integral { [ CompZ[sigman[]] , {uz} ];
In Sur_Neu_Mec; Jacobian Sur; Integration Int; }
EndIf
EndIf
}
}
}
Resolution {
{ Name Elasticity_u;
System {
{ Name A; NameOfFormulation Elasticity_u;
If(Flag_Regime == 1)
Type Complex; Frequency Freq;
EndIf
}
}
Operation {
If(Flag_Regime == 0 || Flag_Regime == 1)
Generate[A]; Solve[A]; SaveSolution[A];
ElseIf(Flag_Regime == 2)
InitSolution[A]; InitSolution[A] ;
TimeLoopNewmark[TimeInit, TimeFinal, DeltaTime, 1/4, 1/2] {
Generate[A]; Solve[A]; SaveSolution[A];
}
Else
GenerateSeparate[A]; EigenSolve[A, Num_Modes, (2*Pi*Freq_Target)^2, 0];
SaveSolutions[A];
EndIf
}
}
}
PostProcessing {
{ Name Elasticity_u; NameOfFormulation Elasticity_u;
PostQuantity {
{ Name u; Value {
If(modelDim == 3)
Term { [ Vector[ {ux}, {uy}, {uz} ]]; In Vol_Mec; Jacobian Vol; }
Else
Term { [ Vector[ {ux}, {uy}, 0 ]]; In Vol_Mec; Jacobian Vol; }
EndIf
}
}
{ Name sigma; Value {
If(modelDim == 3)
Term { [ TensorV[ C_xx[]*{d ux} + C_xy[]*{d uy} + C_xz[]*{d uz},
C_yx[]*{d ux} + C_yy[]*{d uy} + C_yz[]*{d uz},
C_zx[]*{d ux} + C_zy[]*{d uy} + C_zz[]*{d uz} ] ];
In Vol_Mec; Jacobian Vol; }
Else
Term { [ TensorV[ C_xx[]*{d ux} + C_xy[]*{d uy},
C_yx[]*{d ux} + C_yy[]*{d uy},
Vector[0,0,0]] ];
In Vol_Mec; Jacobian Vol; }
EndIf
}
}
}
}
}
PostOperation {
{ Name Elasticity_u; NameOfPostProcessing Elasticity_u;
Operation {
CreateDir[resPath];
Print[ sigma, OnElementsOf Vol_Mec, File StrCat[resPath, "sigma.pos"] ];
Print[ u, OnElementsOf Vol_Mec, File StrCat[resPath, "u.pos"] ];
}
}
}
|