1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
// GetDP - Copyright (C) 1997-2018 P. Dular and C. Geuzaine, University of Liege
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/getdp/getdp/issues
#include <math.h>
#include "GetDPConfig.h"
#include "ProData.h"
#include "F.h"
#include "Message.h"
#if !defined(HAVE_GSL)
void F_CylinderPhase(F_ARG)
{
Message::Error("F_CylinderPhase requires the GSL");
}
void F_DiamondPhase(F_ARG)
{
Message::Error("F_DiamondPhase requires the GSL");
}
#else
#include <gsl/gsl_vector.h>
#include <gsl/gsl_multiroots.h>
struct f_context
{
double x1, y1;
};
static int f(const gsl_vector *ts, void *param, gsl_vector *f)
{
struct f_context * c = (struct f_context *)param;
double t = gsl_vector_get(ts, 0);
double s = gsl_vector_get(ts, 1);
double x = c->x1;
double y = c->y1;
gsl_vector_set(f, 0, cos(t) - s*cos(2*t) - x);
gsl_vector_set(f, 1, sin(t) - s*sin(2*t) - y);
return GSL_SUCCESS;
}
static int df(const gsl_vector *ts, void* param, gsl_matrix *j)
{
double t = gsl_vector_get(ts, 0);
double s = gsl_vector_get(ts, 1);
double j1dt = -sin(t) + s*2*sin(2*t);
double j2dt = cos(t) - 2*s*cos(2*t);
double j1ds = -cos(2*t);
double j2ds = -sin(2*t);
gsl_matrix_set(j, 0, 0, j1dt);
gsl_matrix_set(j, 1, 1, j2ds);
gsl_matrix_set(j, 1, 0, j2dt);
gsl_matrix_set(j, 0, 1, j1ds);
return GSL_SUCCESS;
}
static int fdf(const gsl_vector *uv, void *param, gsl_vector *func, gsl_matrix *jac)
{
f(uv, param, func);
df(uv, param, jac);
return GSL_SUCCESS;
}
static int newton(gsl_multiroot_function_fdf FDF, double *u, double *v)
{
const int MAX_ITER = 25;
const gsl_multiroot_fdfsolver_type* TYPE = gsl_multiroot_fdfsolver_gnewton;
int iter = 0, status;
gsl_multiroot_fdfsolver* solver = gsl_multiroot_fdfsolver_alloc(TYPE, 2);
/* u, v contains initial guess */
gsl_vector *X = gsl_vector_alloc(2);
gsl_vector_set(X, 0, *u);
gsl_vector_set(X, 1, *v);
gsl_multiroot_fdfsolver_set(solver, &FDF, X);
do {
iter++;
status = gsl_multiroot_fdfsolver_iterate(solver);
*u = gsl_vector_get(solver->x, 0);
*v = gsl_vector_get(solver->x, 1);
if(*v < 0 || *v > 15 || fabs(*u) > 7){
status= GSL_FAILURE;
break;
}
status = gsl_multiroot_test_residual(solver->f, 1.e-12);
} while(status == GSL_CONTINUE && iter < MAX_ITER);
gsl_multiroot_fdfsolver_free(solver);
gsl_vector_free(X);
if(status == GSL_SUCCESS)
return 1;
else
return 0;
}
void F_CylinderPhase(F_ARG)
{
double initGuess, tau[2], phase;
double x = A->Val[0], y = A->Val[1];
struct f_context context = {x, y};
gsl_multiroot_function_fdf FDF;
if(x > 0 && y < 1 && y > -1) {
V->Val[0] = x;
V->Type = SCALAR;
return;
}
if(x > 0){
tau[1] = sqrt(x * x + y * y);
if(y > 0){
initGuess = (atan2(y, -x) + 3.14 / 2) / 2;
}
else{
initGuess = (atan2(y, -x) - 3.14 / 2) / 2;
}
}
else{
tau[1] = sqrt(x * x + y * y) - 1;
initGuess = atan2(y, x);
}
if(fabs(x) < 1 && fabs(y) > 6.5){
if(y < 0){
initGuess = initGuess - 3.14 / 8;
}
else{
initGuess = initGuess + 3.14 / 8;
}
}
tau[0] = initGuess;
if(tau[1] == 0){
V->Val[0] = x;
V->Type = SCALAR;
return;
}
FDF.f = &f;
FDF.df = &df;
FDF.fdf = &fdf;
FDF.n = 2;
FDF.params = &context;
if(!newton(FDF, &tau[0], &tau[1]))
Message::Error("Newton did not converge: %lf, %lf \n", tau[0], tau[1]);
/* now we just go on to calculate the phase from this */
phase = cos(tau[0]) + tau[1];
if(phase > abs(13)){
phase = 13;
}
V->Val[0] = phase;
V->Type = SCALAR;
}
void F_DiamondPhase(F_ARG)
{
double x, y, phase, theta, xtrans, ytrans;
x = A->Val[0];
y = A->Val[1];
/*
if(x < 0 &&){
phase = -x;
V-Val[0] = phase;
V->Type = SCALAR;
return;
}
*/
x = -x; /* just a temp investigation */
/*partition up the space into a couple of pieces*/
if(x >= 0 && (y-.1 <= 1 && y+.1 >= -1)){
V->Val[0] = x;
V->Type = SCALAR;
return;
}
/*
if( x <= 0 && (y>=-1 && y<=0) )
{
phase = -y-1 + (-x+(-y-1));
V->Val[0] = phase;
V->Type = SCALAR;
return;
}
*/
/*check to see if the point is in the cone made by the x-corner*/
xtrans = x + 1;
ytrans = y;
theta = atan2(ytrans,xtrans);
if( theta >= 3.14/2 || theta <= -3.14/2){
phase = -1 + sqrt( pow(xtrans,2.0) + pow(ytrans,2.0) );
V->Val[0] = phase;
V->Type = SCALAR;
return;
}
/*check to see if the point is in the upper corner cone*/
xtrans = x;
ytrans = y - 1;
theta = atan2(ytrans,xtrans);
if( theta <= 3.14/2 && theta >= 0 ){
phase = sqrt( pow(x,2.0) + pow(ytrans,2.0) );
V->Val[0] = phase;
V->Type = SCALAR;
return;
}
/*lower corner cone*/
xtrans = x;
ytrans = y + 1;
theta = atan2(ytrans,xtrans);
if( theta >= -3.14/2 && theta <= 0 ){
phase = sqrt( pow(x,2.0) + pow(ytrans,2.0) );
V->Val[0] = phase;
V->Type = SCALAR;
return;
}
/*the point must be in one of the two reflections caused by the
sides facing the incoming wave*/
/* xtrans = x;
ytrans = y; */
if(y<0){
/* xtrans = (x+y+1)/2;
ytrans = (xtrans)-1;
phase = xtrans + sqrt( pow(x-xtrans,2.0) + pow(y-ytrans,2.0) ); */
phase = -x + ( -y + (x-1) );
}
else{
/* xtrans = (1+x-y)/2;
ytrans = xtrans-1;
phase = xtrans + sqrt( pow(x-xtrans,2.0) + pow(-y-ytrans,2.0) ); */
phase = -x + ( y - (1-x) );
}
V->Val[0] = phase;
V->Type = SCALAR;
}
#endif
|