1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
/*===========================================================================
Copyright (C) 2002-2016 Yves Renard, Julien Pommier.
This file is a part of GetFEM++
GetFEM++ is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
/**
@file mixed_elastostatic.cc
@brief Linear Elastostatic problem. A dummy linear
elastotatic problem is solved on a regular mesh, and is compared to
the analytical solution.
This program is used to check that getfem++ is working. This is also
a good example of use of GetFEM++.
@see laplacian.cc
@see nonlinear_elastostatic.cc
*/
#if 0 // Broken program which uses old getfem brick. Should be adapted.
// Kept because it is the only example of mixed elastostatic problem.
#include "getfem/getfem_config.h"
#include "getfem/getfem_assembling.h" /* import assembly methods (and norms comp.) */
#include "getfem/getfem_export.h" /* export functions (save solution in a file) */
#include "getfem/getfem_regular_meshes.h"
#include "getfem/getfem_model_solvers.h"
#include "gmm/gmm.h"
#include "getfem/getfem_interpolation.h"
#include "getfem/getfem_import.h"
using std::endl; using std::cout; using std::cerr;
using std::ends; using std::cin;
/* some GetFEM++ types that we will be using */
using bgeot::base_small_vector; /* special class for small (dim<16) vectors */
using bgeot::base_node; /* geometrical nodes(derived from base_small_vector)*/
using bgeot::scalar_type; /* = double */
using bgeot::size_type; /* = unsigned long */
using bgeot::short_type;
using bgeot::dim_type;
using bgeot::base_matrix; /* small dense matrix. */
/* definition of some matrix/vector types.
* default types of getfem_model_solvers.h
*/
typedef getfem::modeling_standard_sparse_vector sparse_vector;
typedef getfem::modeling_standard_sparse_matrix sparse_matrix;
typedef getfem::modeling_standard_plain_vector plain_vector;
/**************************************************************************/
/* Brique mixed elasticity. */
/**************************************************************************/
namespace getfem {
template<class MAT, class VECT>
void asm_mixed_stiffness_matrix_for_linear_elasticity
(const MAT &RM_, const mesh_im &mim, const mesh_fem &mf,
const mesh_fem &mf_data, const VECT &LAMBDA_INV, const VECT &MU_INV,
const mesh_region &rg = mesh_region::all_convexes()) {
MAT &RM = const_cast<MAT &>(RM_);
GMM_ASSERT1(mf_data.get_qdim() == 1,
"invalid data mesh fem (Qdim=1 required)");
GMM_ASSERT1(mf.get_qdim() == gmm::sqr(mf.linked_mesh().dim()),
"wrong qdim for the mesh_fem");
generic_assembly assem("lambda=data$1(#2); mu=data$2(#2);"
"t=comp(mBase(#1).mBase(#1).Base(#2));"
"M(#1,#1)+= sym(t(:,i,j,:,i,j,k).mu(k)*2"
"+ t(:,i,i,:,j,j,k).lambda(k))");
assem.push_mi(mim);
assem.push_mf(mf);
assem.push_mf(mf_data);
assem.push_data(LAMBDA_INV);
assem.push_data(MU_INV);
assem.push_mat(RM);
assem.assembly(rg);
}
template<class MAT>
void asm_mixed_thetasitau
(const MAT &RM_, const mesh_im &mim, const mesh_fem &mf_sigma,
const mesh_fem &mf_theta,
const mesh_region &rg = mesh_region::all_convexes()) {
MAT &RM = const_cast<MAT &>(RM_);
size_type N = mf_sigma.linked_mesh().dim();
GMM_ASSERT1(mf_sigma.get_qdim() == N*N &&
mf_theta.get_qdim() == (N*(N-1)/2),
"wrong qdim for a mesh_fem");
base_matrix A(N*(N-1)/2, N*N);
size_type k = 0;
for (size_type i = 0; i < N; ++i)
for (size_type j = i + 1; j < N; ++j, ++k) {
A(k, i*N+j) = 1.0;
A(k, j*N+i) = -1.0;
}
generic_assembly assem("A=data(qdim(#1), qdim(#2));"
"t=comp(vBase(#1).vBase(#2));"
"M(#1,#2)+= t(:,i,:,j).A(i,j)");
assem.push_mi(mim);
assem.push_mf(mf_theta);
assem.push_mf(mf_sigma);
assem.push_mat(RM);
assem.push_data(gmm::array1D_reference<scalar_type *>(&A(0,0), A.size()));
assem.assembly(rg);
}
template<class MAT>
void asm_mixed_udivtau
(const MAT &RM_, const mesh_im &mim, const mesh_fem &mf_sigma,
const mesh_fem &mf_u, const mesh_region &rg = mesh_region::all_convexes()) {
MAT &RM = const_cast<MAT &>(RM_);
size_type N = mf_sigma.linked_mesh().dim();
GMM_ASSERT1(mf_sigma.get_qdim() == N*N && mf_u.get_qdim() == N,
"wrong qdim for a mesh_fem");
generic_assembly assem("t=comp(vBase(#1).mGrad(#2));"
"M(#1,#2)+= t(:,i,:,i,j,j)");
assem.push_mi(mim);
assem.push_mf(mf_u);
assem.push_mf(mf_sigma);
assem.push_mat(RM);
assem.assembly(rg);
}
# define MDBRICK_MIXED_ELASTICITY 43224677
template<typename MODEL_STATE = standard_model_state>
class mdbrick_mixed_elasticity : public mdbrick_abstract<MODEL_STATE> {
TYPEDEF_MODEL_STATE_TYPES;
const mesh_im &mim;
const mesh_fem &mf_sigma, &mf_u, &mf_theta;
mdbrick_parameter<VECTOR> lambda_inv_, mu_inv_;
T_MATRIX K;
bool K_uptodate;
size_type nbdof;
virtual void proper_update(void) {
K_uptodate = false;
nbdof = mf_sigma.nb_dof() + mf_u.nb_dof() + mf_theta.nb_dof();
}
public :
const T_MATRIX &get_K(void) {
this->context_check();
if (!K_uptodate || this->parameters_is_any_modified()) {
GMM_ASSERT1(&lambda_inv_.mf() == &mu_inv_.mf(),
"Lame coefficients should share the same mesh_fem");
gmm::resize(K, nbdof, nbdof);
gmm::clear(K);
gmm::sub_interval I1(0, mf_sigma.nb_dof());
gmm::sub_interval I2(mf_sigma.nb_dof(), mf_u.nb_dof());
gmm::sub_interval I3(mf_sigma.nb_dof()+mf_u.nb_dof(),
mf_theta.nb_dof());
VECTOR vlambda(lambda_inv_.get()), vmu(mu_inv_.get());
asm_mixed_stiffness_matrix_for_linear_elasticity
(gmm::sub_matrix(K, I1), mim, mf_sigma, lambda_inv_.mf(), vlambda,
vmu, mf_u.linked_mesh().get_mpi_region());
T_MATRIX B1(mf_u.nb_dof(), mf_sigma.nb_dof());
asm_mixed_udivtau
(B1, mim, mf_sigma, mf_u, mf_u.linked_mesh().get_mpi_region());
gmm::copy(gmm::transposed(B1), gmm::sub_matrix(K, I1, I2));
gmm::copy(B1, gmm::sub_matrix(K, I2, I1));
T_MATRIX B2(mf_theta.nb_dof(), mf_sigma.nb_dof());
asm_mixed_thetasitau
(B2, mim, mf_sigma, mf_theta, mf_u.linked_mesh().get_mpi_region());
gmm::copy(gmm::transposed(B2), gmm::sub_matrix(K, I1, I3));
gmm::copy(B2, gmm::sub_matrix(K, I3, I1));
K_uptodate = true;
this->parameters_set_uptodate();
}
return K;
}
mdbrick_parameter<VECTOR> &lambda_inv(void) { return lambda_inv_; }
const mdbrick_parameter<VECTOR> &lambda_inv(void) const
{ return lambda_inv_; }
mdbrick_parameter<VECTOR> &mu_inv(void) { return mu_inv_; }
const mdbrick_parameter<VECTOR> &mu_inv(void) const { return mu_inv_; }
virtual void do_compute_tangent_matrix(MODEL_STATE &MS, size_type i0,
size_type) {
gmm::sub_interval SUBI(i0, nbdof);
gmm::copy(get_K(), gmm::sub_matrix(MS.tangent_matrix(), SUBI));
}
virtual void do_compute_residual(MODEL_STATE &MS, size_type i0,
size_type) {
gmm::sub_interval SUBI(i0, nbdof);
gmm::mult(get_K(), gmm::sub_vector(MS.state(), SUBI),
gmm::sub_vector(MS.residual(), SUBI));
}
SUBVECTOR get_solution(MODEL_STATE &MS) {
gmm::sub_interval SUBU(this->first_index(), nbdof);
return gmm::sub_vector(MS.state(), SUBU);
}
SUBVECTOR get_U(MODEL_STATE &MS) {
gmm::sub_interval SUBU(this->first_index()+mf_sigma.nb_dof(), mf_u.nb_dof());
return gmm::sub_vector(MS.state(), SUBU);
}
void init_(void) {
size_type N = mf_sigma.linked_mesh().dim();
GMM_ASSERT1(mf_sigma.get_qdim() == N*N,
"Qdim of mf_sigma should be " << N*N << ".");
GMM_ASSERT1(mf_u.get_qdim() == N,
"Qdim of mf_u should be " << N << ".");
GMM_ASSERT1(mf_theta.get_qdim() == (N*(N-1)/2),
"Qdim of mf_theta should be " << (N*(N-1)/2) << ".");
this->add_proper_mesh_im(mim);
this->add_proper_mesh_fem(mf_sigma, MDBRICK_MIXED_ELASTICITY);
this->add_proper_mesh_fem(mf_u, MDBRICK_MIXED_ELASTICITY);
this->add_proper_mesh_fem(mf_theta, MDBRICK_MIXED_ELASTICITY);
this->force_update();
}
/* constructor for a homogeneous material (constant lambda and mu).
* @param epsilon the thickness of the plate.
*/
mdbrick_mixed_elasticity
(const mesh_im &mim_, const mesh_fem &mf_sigma_, const mesh_fem &mf_u_,
const mesh_fem &mf_theta_, value_type lambdai, value_type mui)
: mim(mim_), mf_sigma(mf_sigma_), mf_u(mf_u_),
mf_theta(mf_theta_), lambda_inv_("lambda", mf_u_.linked_mesh(), this),
mu_inv_("mu", mf_u_.linked_mesh(), this) {
size_type N = mf_u_.linked_mesh().dim();
cout << "lambda_inv = " << -lambdai/(2*mui*(double(N)*lambdai+2*mui))
<< endl;
cout << "mu_inv = " << 1. / (4. * mui) << endl;
lambda_inv_.set(-lambdai/(2*mui*(double(N)*lambdai+2*mui)));
mu_inv_.set(1. / (4. * mui));
init_();
}
};
template<typename VECT1, typename VECT2>
void asm_source_term_normal(VECT1 &B, const mesh_im &mim, const mesh_fem &mf,
const mesh_fem &mf_data, const VECT2 &F,
const mesh_region &rg) {
GMM_ASSERT1(mf_data.get_qdim() == 1, "invalid data mesh_fem");
const char *st;
if (mf.get_qdim_n() == 1)
st = "F=data(#2);"
"V(#1)+=comp(vBase(#1).Base(#2).Normal())(:,j,k,j).F(k);";
else
st = "F=data(mdim(#1),#2);" // a corriger pour les tenseurs non carres
"V(#1)+=comp(mBase(#1).Base(#2).Normal())(:,i,j,k,j).F(i,k);";
asm_real_or_complex_1_param(B, mim, mf, mf_data, F, rg, st);
}
template<typename MODEL_STATE = standard_model_state>
class mdbrick_source_term_normal : public mdbrick_abstract<MODEL_STATE> {
TYPEDEF_MODEL_STATE_TYPES;
mdbrick_parameter<VECTOR> B_;
VECTOR F_;
bool F_uptodate;
size_type boundary, num_fem, i1, nbd;
void proper_update(void) {
const mesh_fem &mf_u = this->get_mesh_fem(num_fem);
i1 = this->mesh_fem_positions[num_fem];
nbd = mf_u.nb_dof();
gmm::resize(F_, mf_u.nb_dof());
gmm::clear(F_);
F_uptodate = false;
}
public :
mdbrick_parameter<VECTOR> &source_term(void) {
const mesh_fem &mf_u = this->get_mesh_fem(num_fem);
B_.reshape(mf_u.get_qdim() / mf_u.linked_mesh().dim());
return B_;
}
const mdbrick_parameter<VECTOR> &source_term(void) const { return B_; }
// gives the right hand side of the linear system.
const VECTOR &get_F(void) {
this->context_check();
if (!F_uptodate || this->parameters_is_any_modified()) {
const mesh_fem &mf_u = *(this->mesh_fems[num_fem]);
F_uptodate = true;
GMM_TRACE2("Assembling a source term");
asm_source_term_normal(F_, *(this->mesh_ims[0]), mf_u, B_.mf(), B_.get(),
mf_u.linked_mesh().get_mpi_sub_region(boundary));
this->parameters_set_uptodate();
}
return F_;
}
virtual void do_compute_tangent_matrix(MODEL_STATE &, size_type,
size_type) { }
virtual void do_compute_residual(MODEL_STATE &MS, size_type i0,
size_type) {
gmm::add(gmm::scaled(get_F(), value_type(-1)),
gmm::sub_vector(MS.residual(), gmm::sub_interval(i0+i1, nbd)));
}
/* Constructor not defining the rhs
@param problem the sub-problem to which this brick applies.
@param bound the mesh boundary number on which the source term is applied
(by default, it is a volumic source term as the whole mesh is taken).
@param num_fem_ the mesh_fem number on which this brick is is applied.
*/
mdbrick_source_term_normal(mdbrick_abstract<MODEL_STATE> &problem,
size_type bound = size_type(-1), size_type num_fem_=0)
: B_("source_term", this), boundary(bound),
num_fem(num_fem_) {
this->add_sub_brick(problem);
if (bound != size_type(-1))
this->add_proper_boundary_info(num_fem, bound, MDBRICK_NEUMANN);
this->force_update();
source_term();
}
};
}
/**************************************************************************/
/* Exact solution. */
/**************************************************************************/
gmm::row_matrix<base_small_vector> sol_K;
static scalar_type sol_lambda, sol_mu, alph = 0.3;
base_small_vector sol_u(const base_node &x) {
int N = x.size(); base_small_vector res(N);
for (int i = 0; i < N; ++i)
res[i] = alph * sin(gmm::vect_sp(sol_K.row(i), x));
return res;
}
base_small_vector sol_f(const base_node &x) {
int N = x.size();
base_small_vector res(N);
for (int i = 0; i < N; i++) {
res[i] = alph * ( sol_mu * gmm::vect_sp(sol_K.row(i), sol_K.row(i)) )
* sin(gmm::vect_sp(sol_K.row(i), x));
for (int j = 0; j < N; j++)
res[i] += alph * ( (sol_lambda + sol_mu) * sol_K(j,j) * sol_K(j,i))
* sin(gmm::vect_sp(sol_K.row(j), x));
}
return res;
}
base_matrix sol_sigma(const base_node &x) {
int N = x.size();
base_matrix res(N,N);
for (int i = 0; i < N; i++)
for (int j = 0; j <= i; j++) {
res(j,i) = res(i,j) = alph * sol_mu *
( sol_K(i,j) * cos(gmm::vect_sp(sol_K.row(i), x))
+ sol_K(j,i) * cos(gmm::vect_sp(sol_K.row(j), x))
);
if (i == j)
for (int k = 0; k < N; k++)
res(i,j) += alph * sol_lambda * sol_K(k,k)
* cos(gmm::vect_sp(sol_K.row(k), x));
}
return res;
}
/*
structure for the elastostatic problem
*/
struct elastostatic_problem {
enum { DIRICHLET_BOUNDARY_NUM = 0, NEUMANN_BOUNDARY_NUM = 1};
getfem::mesh mesh; /* the mesh */
getfem::mesh_im mim; /* the integration methods. */
getfem::mesh_fem mf_u; /* main mesh_fem, for the elastostatic solution */
getfem::mesh_fem mf_sigma; /* mesh_fem for the stress tensor. */
getfem::mesh_fem mf_theta; /* mesh_fem for the multiplier for the symmetry *
* of the stress tensor. */
getfem::mesh_fem mf_mult; /* mesh_fem for the Dirichlet condition. */
getfem::mesh_fem mf_rhs; /* mesh_fem for the right hand side (f(x),..) */
scalar_type lambda, mu; /* Lam coefficients. */
scalar_type residual; /* max residual for iterative solvers */
getfem::constraints_type dirichlet_version;
std::string datafilename;
bgeot::md_param PARAM;
bool solve(plain_vector &U);
void init(void);
void compute_error(plain_vector &U);
elastostatic_problem(void) : mim(mesh),mf_u(mesh), mf_sigma(mesh),
mf_theta(mesh),mf_mult(mesh),
mf_rhs(mesh) {}
};
/* Read parameters from the .param file, build the mesh, set finite element
* and integration methods and selects the boundaries.
*/
void elastostatic_problem::init(void) {
std::string MESH_FILE = PARAM.string_value("MESH_FILE", "Mesh file");
std::string FEM_TYPE_U = PARAM.string_value("FEM_TYPE_U","FEM name");
std::string FEM_TYPE_SIGMA = PARAM.string_value("FEM_TYPE_SIGMA","FEM name");
std::string FEM_TYPE_THETA = PARAM.string_value("FEM_TYPE_THETA","FEM name");
std::string INTEGRATION = PARAM.string_value("INTEGRATION",
"Name of integration method");
cout << "MESH_FILE=" << MESH_FILE << "\n";
cout << "FEM_TYPE_U=" << FEM_TYPE_U << "\n";
cout << "FEM_TYPE_SIGMA=" << FEM_TYPE_SIGMA << "\n";
cout << "FEM_TYPE_THETA=" << FEM_TYPE_THETA << "\n";
cout << "INTEGRATION=" << INTEGRATION << "\n";
size_type NX = PARAM.int_value("NX");
size_type N = PARAM.int_value("N");
std::stringstream filename; filename << MESH_FILE;
if ((MESH_FILE.compare(0,11,"structured:") == 0) && NX > 0) {
filename << ";NSUBDIV=[" << NX;
for (size_type i = 1; i < N; ++i) filename << "," << NX;
filename << "];";
}
getfem::import_mesh(filename.str(), mesh);
GMM_ASSERT1(N == mesh.dim(), "The mesh has not the right dimension");
dirichlet_version
= getfem::constraints_type(PARAM.int_value("DIRICHLET_VERSION",
"Dirichlet version"));
datafilename = PARAM.string_value("ROOTFILENAME","Base name of data files.");
scalar_type FT = PARAM.real_value("FT", "parameter for exact solution");
residual = PARAM.real_value("RESIDUAL");
if (residual == 0.) residual = 1e-10;
gmm::resize(sol_K, N, N);
for (size_type i = 0; i < N; i++)
for (size_type j = 0; j < N; j++)
sol_K(i,j) = (i == j) ? 0.0 : FT;
mu = PARAM.real_value("MU", "Lam coefficient mu");
lambda = PARAM.real_value("LAMBDA", "Lam coefficient lambda");
sol_lambda = lambda; sol_mu = mu;
mf_u.set_qdim(dim_type(N));
mf_mult.set_qdim(dim_type(N));
mf_sigma.set_qdim(dim_type(N), dim_type(N));
/* set the finite element on the mf_u */
getfem::pfem pf_u = getfem::fem_descriptor(FEM_TYPE_U);
getfem::pfem pf_sigma = getfem::fem_descriptor(FEM_TYPE_SIGMA);
getfem::pfem pf_theta = getfem::fem_descriptor(FEM_TYPE_THETA);
getfem::pintegration_method ppi =
getfem::int_method_descriptor(INTEGRATION);
mim.set_integration_method(mesh.convex_index(), ppi);
mf_u.set_finite_element(mesh.convex_index(), pf_u);
mf_sigma.set_finite_element(mesh.convex_index(), pf_sigma);
mf_theta.set_finite_element(mesh.convex_index(), pf_theta);
std::string dirichlet_fem_name
= PARAM.string_value("DIRICHLET_FEM_TYPE", "Fem for dirichlet condition");
cout << "DIRICHLET_FEM_TYPE=" << dirichlet_fem_name << "\n";
mf_mult.set_finite_element(mesh.convex_index(),
getfem::fem_descriptor(dirichlet_fem_name));
/* set the finite element on mf_rhs (same as mf_u is DATA_FEM_TYPE is
not used in the .param file */
std::string data_fem_name = PARAM.string_value("DATA_FEM_TYPE");
if (data_fem_name.size() == 0) {
GMM_ASSERT1(pf_u->is_lagrange(), "You are using a non-lagrange FEM. "
<< "In that case you need to set "
<< "DATA_FEM_TYPE in the .param file");
mf_rhs.set_finite_element(mesh.convex_index(), pf_u);
} else {
mf_rhs.set_finite_element(mesh.convex_index(),
getfem::fem_descriptor(data_fem_name));
}
/* set boundary conditions
* (Neuman on the upper face, Dirichlet elsewhere) */
cout << "Selecting Neumann and Dirichlet boundaries\n";
getfem::mesh_region border_faces;
getfem::outer_faces_of_mesh(mesh, border_faces);
for (getfem::mr_visitor i(border_faces); !i.finished(); ++i) {
base_node un = mesh.normal_of_face_of_convex(i.cv(), i.f());
un /= gmm::vect_norm2(un);
if (gmm::abs(un[N-1] - 1.0) < 0.5) { // new Neumann face
mesh.region(NEUMANN_BOUNDARY_NUM).add(i.cv(), i.f());
} else {
mesh.region(DIRICHLET_BOUNDARY_NUM).add(i.cv(), i.f());
}
}
}
/* compute the error with respect to the exact solution */
void elastostatic_problem::compute_error(plain_vector &U) {
size_type N = mesh.dim();
std::vector<scalar_type> V(mf_rhs.nb_dof()*N), W(mf_rhs.nb_dof()*N);
getfem::interpolation(mf_u, mf_rhs, U, V);
getfem::interpolation_function(mf_rhs, W, sol_u);
gmm::add(gmm::scaled(W, -1.0), V);
cout.precision(16);
mf_rhs.set_qdim(dim_type(N));
scalar_type l2 = getfem::asm_L2_norm(mim, mf_rhs, V);
scalar_type h1 = getfem::asm_H1_norm(mim, mf_rhs, V);
cout << "L2 error = " << l2 << endl
<< "H1 error = " << h1 << endl
<< "Linfty error = " << gmm::vect_norminf(V) << endl;
getfem::vtk_export exp(datafilename + "_err.vtk",
PARAM.int_value("VTK_EXPORT")==1);
exp.exporting(mf_rhs);
exp.write_point_data(mf_rhs, V, "elastostatic_displacement");
mf_rhs.set_qdim(1);
}
/**************************************************************************/
/* Model. */
/**************************************************************************/
bool elastostatic_problem::solve(plain_vector &U) {
size_type N = mesh.dim();
cout << "Number of dof for u: " << mf_u.nb_dof() << endl;
cout << "Number of dof for sigma: " << mf_sigma.nb_dof() << endl;
// Linearized elasticity brick.
getfem::mdbrick_mixed_elasticity<>
ELAS(mim, mf_sigma, mf_u, mf_theta, lambda, mu);
// Volumic source term brick.
getfem::mdbrick_source_term<> VOL_F(ELAS, size_type(-1), 1);
size_type nb_dof_rhs = mf_rhs.nb_dof();
plain_vector F(nb_dof_rhs * N);
getfem::interpolation_function(mf_rhs, F, sol_f);
VOL_F.source_term().set(mf_rhs, gmm::scaled(F, -1.0));
getfem::mdbrick_source_term_normal<>
NEUMANN(VOL_F, NEUMANN_BOUNDARY_NUM);
gmm::resize(F, nb_dof_rhs * N);
getfem::interpolation_function(mf_rhs, F, sol_u, NEUMANN_BOUNDARY_NUM);
NEUMANN.source_term().set(mf_rhs, F);
// Dirichlet condition brick.
getfem::mdbrick_normal_component_Dirichlet<>
final_model(NEUMANN, DIRICHLET_BOUNDARY_NUM, mf_mult);
final_model.set_constraints_type(dirichlet_version);
final_model.set_coeff_dimension(2);
gmm::resize(F, nb_dof_rhs * N * N);
getfem::interpolation_function(mf_rhs, F, sol_sigma, DIRICHLET_BOUNDARY_NUM);
final_model.rhs().set(mf_rhs, F);
cout << "Total number of variables : " << final_model.nb_dof() << endl;
getfem::standard_model_state MS(final_model);
gmm::iteration iter(residual, 1, 40000);
iter.init();
getfem::standard_solve(MS, final_model, iter);
gmm::resize(U, mf_u.nb_dof());
gmm::copy(ELAS.get_U(MS), U);
return (iter.converged());
}
/**************************************************************************/
/* main program. */
/**************************************************************************/
#endif
int main(
#if 0
int argc, char *argv[]
#endif
) {
#if 0
GMM_SET_EXCEPTION_DEBUG; // Exceptions make a memory fault, to debug.
FE_ENABLE_EXCEPT; // Enable floating point exception for Nan.
try {
elastostatic_problem p;
p.PARAM.read_command_line(argc, argv);
p.init();
p.mesh.write_to_file(p.datafilename + ".mesh");
plain_vector U;
if (!p.solve(U)) GMM_ASSERT1(false, "Solve has failed");
p.compute_error(U);
if (p.PARAM.int_value("VTK_EXPORT")) {
cout << "export to " << p.datafilename + ".vtk" << "..\n";
getfem::vtk_export exp(p.datafilename + ".vtk",
p.PARAM.int_value("VTK_EXPORT")==1);
exp.exporting(p.mf_u);
exp.write_point_data(p.mf_u, U, "elastostatic_displacement");
cout << "export done, you can view the data file with (for example)\n"
"mayavi -d " << p.datafilename << ".vtk -f ExtractVectorNorm -f "
"WarpVector -m BandedSurfaceMap -m Outline\n";
}
}
GMM_STANDARD_CATCH_ERROR;
#endif
return 0;
}
|