1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
|
/*===========================================================================
Copyright (C) 2006-2016 Yves Renard, Julien Pommier.
This file is a part of GetFEM++
GetFEM++ is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
#ifdef MAINTAINER_MODE
# include <sys/types.h>
# include <sys/wait.h>
# include <unistd.h>
# include <stdio.h>
# include <errno.h>
#endif
#include <getfemint_misc.h>
#include <getfem/getfem_mesh_fem.h>
#include <getfem/getfem_nonlinear_elasticity.h>
#include <getfem/getfem_plasticity.h>
#include <algorithm>
namespace getfemint {
gfi_array* checked_gfi_array_create(int ndim, const int *dims, gfi_type_id type, gfi_complex_flag is_complex) {
if (dims == NULL && ndim != 0) GMM_ASSERT1(false, "");
gfi_array *t = gfi_array_create(ndim,const_cast<int*>(dims),type,is_complex);
GMM_ASSERT1(t != NULL, "allocation of " << ndim
<< "-array of " << gfi_type_id_name(type,is_complex)
<< " failed\n");
return t;
}
gfi_array* checked_gfi_array_create_0(gfi_type_id type, gfi_complex_flag is_complex) {
return checked_gfi_array_create(0,NULL,type,is_complex);
}
gfi_array* checked_gfi_array_create_1(int M, gfi_type_id type, gfi_complex_flag is_complex) {
gfi_array *t = gfi_array_create_1(M,type,is_complex);
GMM_ASSERT1(t != NULL, "allocation of vector of " << M << " "
<< gfi_type_id_name(type,is_complex) << " failed\n");
return t;
}
gfi_array* checked_gfi_array_create_2(int M, int N, gfi_type_id type, gfi_complex_flag is_complex) {
gfi_array *t = gfi_array_create_2(M,N,type,is_complex);
GMM_ASSERT1(t != NULL, "allocation of a " << M << "x" << N << " matrix of "
<< gfi_type_id_name(type,is_complex) << " failed\n");
return t;
}
gfi_array* checked_gfi_array_from_string(const char*s) {
gfi_array *t = gfi_array_from_string(s);
GMM_ASSERT1(t != NULL, "allocation of a string of length "
<< strlen(s) << " failed\n");
return t;
}
gfi_array* checked_gfi_create_sparse(int m, int n, int nzmax, gfi_complex_flag is_complex) {
gfi_array *t = gfi_create_sparse(m,n,nzmax,is_complex);
GMM_ASSERT1(t != NULL, "allocation of sparse(m=" << m
<< ", n=" << n << ", nzmax=" << nzmax << ") failed\n");
return t;
}
gfi_array *
convert_to_gfi_sparse(const gf_real_sparse_by_row& smat, double threshold)
{
int ni = int(gmm::mat_nrows(smat));
int nj = int(gmm::mat_ncols(smat));
unsigned nnz = 0;
gfi_array *mxA;
std::vector<int> ccnt(nj);
std::fill(ccnt.begin(), ccnt.end(), 0);
std::vector<double> rowmax(ni, 0.0), colmax(nj, 0.0);
gmm::linalg_traits<gmm::linalg_traits<gf_real_sparse_by_row>
::const_sub_row_type>::const_iterator it, ite;
/* first pass : find the maxima / row & column */
for (int i = 0; i < ni; ++i) {
it = gmm::vect_const_begin(gmm::mat_const_row(smat,i));
ite = gmm::vect_const_end(gmm::mat_const_row(smat,i));
for (; it != ite; ++it) {
rowmax[i] = std::max(rowmax[i], gmm::abs(*it));
colmax[it.index()] = std::max(colmax[it.index()], gmm::abs(*it));
}
}
/* second pass : count the significant terms */
for (int i = 0; i < ni; i++) {
/* count significatives values */
it = gmm::vect_const_begin(gmm::mat_const_row(smat,i));
ite = gmm::vect_const_end(gmm::mat_const_row(smat,i));
for (; it != ite; ++it) {
if (*it != 0. && /* (*p).e != 0 => max(rowmax,colmax) != 0 */
gmm::abs(*it) > threshold * std::max(rowmax[i], colmax[it.index()]) ) {
ccnt[it.index()]++;
nnz++;
}
}
}
mxA = checked_gfi_create_sparse(ni, nj, nnz, GFI_REAL); assert(mxA != NULL);
double *pr;
unsigned *ir, *jc;
pr = gfi_sparse_get_pr(mxA); assert(pr != NULL);
ir = gfi_sparse_get_ir(mxA); assert(ir != NULL);
jc = gfi_sparse_get_jc(mxA); assert(jc != NULL); /* dim == nj+1 */
jc[0] = 0;
for (int j=0; j < nj; j++) {
// mexPrintf("ccnt[%d]=%d\n", j, ccnt[j]);
jc[j+1] = jc[j] + ccnt[j];
}
assert(nnz == jc[nj]);
//gmm::wsvector<getfem::scalar_type>::const_sorted_iterator its, itse;
gmm::linalg_traits<gmm::rsvector<getfem::scalar_type> >::const_iterator its, itse;
/* third pass: filling pr and ir */
std::fill(ccnt.begin(), ccnt.end(), 0);
gmm::rsvector<getfem::scalar_type> sorted(gmm::mat_ncols(smat));
for (int i=0; i < ni; i++) {
gmm::copy(gmm::mat_const_row(smat, i), sorted);
its = gmm::vect_begin(sorted);
itse = gmm::vect_end(sorted);
for (; its != itse; ++its) {
if ((*its) != 0. && /* (*its) != 0 => max(rowmax,colmax) != 0 */
gmm::abs(*its)/std::max(rowmax[i], colmax[its.index()]) > threshold) {
ir[jc[its.index()]+ccnt[its.index()]] = i;
pr[jc[its.index()]+ccnt[its.index()]] = *its;
ccnt[its.index()]++;
}
}
}
return mxA;
}
gfi_array *
convert_to_gfi_sparse(const gf_real_sparse_by_col& smat, double threshold)
{
int ni = int(gmm::mat_nrows(smat));
int nj = int(gmm::mat_ncols(smat));
unsigned nnz = 0;
gfi_array *mxA;
std::vector<int> ccnt(nj);
std::fill(ccnt.begin(), ccnt.end(), 0);
std::vector<double> rowmax(ni, 0.0), colmax(nj, 0.0);
gmm::linalg_traits<gmm::linalg_traits<gf_real_sparse_by_col>
::const_sub_col_type>::const_iterator it, ite;
/* first pass : find the maxima / row & column */
for (int j = 0; j < nj; ++j) {
it = gmm::vect_const_begin(gmm::mat_const_col(smat,j));
ite = gmm::vect_const_end(gmm::mat_const_col(smat,j));
for (; it != ite; ++it) {
rowmax[it.index()] = std::max(rowmax[it.index()], gmm::abs(*it));
colmax[j] = std::max(colmax[j], gmm::abs(*it));
}
}
/* second pass : count the significant terms */
for (int j = 0; j < nj; j++) {
/* count significatives values */
it = gmm::vect_const_begin(gmm::mat_const_col(smat,j));
ite = gmm::vect_const_end(gmm::mat_const_col(smat,j));
for (; it != ite; ++it) {
if (*it != 0. && /* (*p).e != 0 => max(rowmax,colmax) != 0 */
gmm::abs(*it) > threshold * std::max(colmax[j], rowmax[it.index()]) ) {
ccnt[j]++;
nnz++;
}
}
}
mxA = checked_gfi_create_sparse(ni, nj, nnz, GFI_REAL); assert(mxA != NULL);
double *pr;
unsigned *ir, *jc;
pr = gfi_sparse_get_pr(mxA); assert(pr != NULL);
ir = gfi_sparse_get_ir(mxA); assert(ir != NULL);
jc = gfi_sparse_get_jc(mxA); assert(jc != NULL); /* dim == nj+1 */
jc[0] = 0;
for (int j=0; j < nj; j++) {
// mexPrintf("ccnt[%d]=%d\n", j, ccnt[j]);
jc[j+1] = jc[j] + ccnt[j];
}
assert(nnz == jc[nj]);
gmm::linalg_traits<gmm::rsvector<getfem::scalar_type> >::const_iterator its, itse;
/* third pass: filling pr and ir */
std::fill(ccnt.begin(), ccnt.end(), 0);
gmm::rsvector<getfem::scalar_type> sorted(gmm::mat_nrows(smat));
for (int j=0; j < nj; j++) {
gmm::copy(gmm::mat_const_col(smat, j), sorted);
its = gmm::vect_const_begin(sorted);
itse = gmm::vect_const_end(sorted);
for (; its != itse; ++its) {
if ((*its) != 0. && /* (*its) != 0 => max(rowmax,colmax) != 0 */
gmm::abs((*its))/std::max(colmax[j], rowmax[its.index()]) > threshold) {
ir[jc[j]+ccnt[j]] = unsigned(its.index());
pr[jc[j]+ccnt[j]] = (*its);
ccnt[j]++;
}
}
}
return mxA;
}
/* merge the edge list of a convex into 'el',
filtering the edges of the face 'f' if (f != -1) */
static
void mesh_edge_list_merge(const getfem::mesh &m, bgeot::edge_list &el, const bgeot::edge_list &elcv, int cv, int f)
{
bgeot::edge_list::const_iterator it = elcv.begin();
for (it = elcv.begin(); it != elcv.end(); it++) {
if (f != -1) {
bgeot::mesh_structure::ind_pt_face_ct
pt = m.ind_points_of_face_of_convex(cv, short_type(f));
if (std::find(pt.begin(), pt.end(), (*it).i) == pt.end()) continue;
if (std::find(pt.begin(), pt.end(), (*it).j) == pt.end()) continue;
}
el.add(*it);
}
}
/* used by gf_mesh_get and gf_mesh_fem_get */
void
build_edge_list(const getfem::mesh &m, bgeot::edge_list &el, mexargs_in &in) {
iarray v;
bool all_cv = true;
bool merge_convex = false;
if (in.remaining() && !in.front().is_string()) {
v = in.pop().to_iarray(-1, -1);
all_cv = false;
}
if (in.remaining() && in.front().is_string()) {
std::string s = in.pop().to_string();
if (cmd_strmatch(s,"merge convex") || cmd_strmatch(s,"merge"))
merge_convex = true;
else bad_cmd(s);
}
if (all_cv) { /* the fastest way : edges off all convexes */
bgeot::mesh_edge_list(m, el, merge_convex);
} else { /* slower (and not very smart) way : edges from
selected convexes/faces */
if (v.getm() != 1 && v.getm() != 2)
THROW_ERROR("wrong number of rows for CVLIST");
size_type j = 0;
/* loop over the rows -- if face numbers are given, the performance will
be better if the columns are grouped by convex numbers */
while (j < v.getn()) {
size_type cv = size_type(v(0,unsigned(j))-config::base_index());
bgeot::edge_list elcv;
if (!m.convex_index().is_in(cv))
THROW_ERROR("can't build edges of convex " << cv + config::base_index()
<< ": there is no such convex in mesh");
std::vector<size_type> cvpt(m.ind_points_of_convex(cv).begin(), m.ind_points_of_convex(cv).end());
bgeot::mesh_edge_list_convex(m.structure_of_convex(cv), cvpt, cv, elcv, merge_convex);
if (v.getm() == 2) { /* face numbers present */
/* loop while the convex number do not change */
do {
mesh_edge_list_merge(m, el, elcv, int(cv), int(v(1,unsigned(j))-config::base_index()));
j++;
} while (j < v.getn() && size_type(v(0,unsigned(j))-config::base_index()) == cv);
} else { /* merge all edges of the convex */
mesh_edge_list_merge(m,el, elcv, int(cv), -1);
j++;
}
}
}
}
/* build a vector of couples <convex number, face number> */
void build_convex_face_lst(const getfem::mesh& m, std::vector<convex_face>& l, const iarray *v) {
l.resize(0);
if (v) {
if (v->getm() != 1 && v->getm()!=2) THROW_ERROR("too much rows (2 max)");
l.resize(v->getn());
for (unsigned i=0; i < v->getn(); ++i) {
l[i].cv = size_type(v->operator()(0,i))-config::base_index();
if (!m.convex_index()[l[i].cv])
THROW_ERROR("the convex " << l[i].cv+config::base_index() << " is not part of the mesh");
if (v->getm() == 2) {
l[i].f = dim_type(v->operator()(1,i)-config::base_index());
if (dim_type(l[i].f+1) && l[i].f >=
m.structure_of_convex(l[i].cv)->nb_faces())
THROW_ERROR("face " << l[i].f+config::base_index() << " of convex " << l[i].cv+config::base_index() << "("
<< bgeot::name_of_geometric_trans(m.trans_of_convex(l[i].cv))
<< ") does not exist");
}
else l[i].f = dim_type(-1);
}
} else {
l.reserve(m.convex_index().card());
for (dal::bv_visitor cv(m.convex_index()); !cv.finished(); ++cv)
l.push_back(convex_face(cv,dim_type(-1)));
}
}
getfem::mesh_region
to_mesh_region(const iarray &v) {
getfem::mesh_region rg;
if (v.getm() != 1 && v.getm()!=2) THROW_ERROR("too much rows for mesh_region description (2 max)");
for (unsigned i=0; i < v.getn(); ++i) {
size_type cv = size_type(v(0,i))-config::base_index();
short_type f = short_type(-1);
if (v.getm() == 2)
f = short_type(v(1,i)-config::base_index());
rg.add(cv,f);
}
return rg;
}
getfem::mesh_region
to_mesh_region(const getfem::mesh& m, const iarray *v) {
if (v) {
getfem::mesh_region rg = to_mesh_region(*v);
/* check that the region is ok wrt m */
for (getfem::mr_visitor i(rg); !i.finished(); ++i) {
size_type cv = i.cv();
if (!m.convex_index()[cv])
THROW_ERROR("the convex " << cv+config::base_index() << " is not part of the mesh");
if (i.is_face()) {
short_type f = i.f();
if (f >= m.structure_of_convex(cv)->nb_faces())
THROW_ERROR("face " << f+config::base_index() << " of convex " << cv+config::base_index() << "("
<< bgeot::name_of_geometric_trans(m.trans_of_convex(cv))
<< ") does not exist");
}
}
return rg;
} else {
return getfem::mesh_region(m.convex_index());
}
}
/*
interpolate the solution (in vector U) on the element cv,
evaluated at the points 'pt' (given in the reference convex)
*/
void interpolate_on_convex_ref(const getfem::mesh_fem *mf,
getfem::size_type cv,
const std::vector<getfem::base_node> &pt,
const darray& U,
getfem::base_matrix &pt_val)
{
assert(mf->convex_index().is_in(cv));
assert(!mf->is_reduced());
getfem::pfem cv_fem = mf->fem_of_element(cv);
dim_type qdim = mf->get_qdim();
/* largely inspired by getfem_export.h */
/* interpolation of the solution. */
/* faux dans le cas des lments non tau-equivalents ou vectoriel. */
if (cv_fem->target_dim() != 1)
THROW_ERROR("interpolation on vector fem is still to be done! "
"(or at least to be tested...)");
if (U.getn() != mf->nb_dof())
THROW_ERROR("wrong nb of columns for U");
assert(cv_fem->is_equivalent());
pt_val.resize(qdim*U.getm(), pt.size());
getfem::base_matrix G;
if (mf->fem_of_element(cv)->need_G())
bgeot::vectors_to_base_matrix(G, mf->linked_mesh().points_of_convex(cv));
getfem::base_vector coeff(mf->nb_basic_dof_of_element(cv));
getfem::base_vector val(qdim);
getfem::fem_interpolation_context
ctx(mf->linked_mesh().trans_of_convex(cv), cv_fem,
getfem::base_node(), G, cv);
for (size_type row = 0; row < U.getm(); ++row) {
for (size_type j = 0; j < coeff.size(); j++)
coeff[j] = U(unsigned(row), unsigned(mf->ind_basic_dof_of_element(cv)[j]));
for (size_type j = 0; j < pt.size(); ++j) {
ctx.set_xref(pt[j]);
cv_fem->interpolation(ctx, coeff, val, qdim);
for (size_type q = 0; q < qdim; ++q)
pt_val(row*qdim + q,j) = val[q];
}
}
}
/* utility function for eval_on_triangulated_surface */
static void
eval_sub_nodes(unsigned N, const std::vector<getfem::base_node>& V,
std::vector<getfem::base_node>& spt) {
assert(N>0);
spt.resize(((N+1)*(N+2))/2);
/*
. pt[0]
. /\
. / \
. pt[2]/____\pt[1]
refinment:
. 0 <- layer 0
. 111 <- layer 1 etc..
. 22222
*/
spt[0] = V[0];
size_type pcnt = 1;
/* find the three nodes of the each sub-triangle */
for (size_type layer = 1; layer <= N; layer++) {
getfem::base_node A,B;
getfem::scalar_type c;
c = ((getfem::scalar_type)layer)/N;
A = V[0] + (V[2] - V[0]) * c;
B = V[0] + (V[1] - V[0]) * c;
for (size_type inode = 0; inode <= layer; inode++, pcnt++) {
spt[pcnt] = A + (B-A) * (scalar_type(inode)/scalar_type(layer));
}
}
if (!(pcnt == spt.size())) THROW_INTERNAL_ERROR;
}
/* U may have zero rows, in that case, only the geometric deformation
of the points will be computed and stored in w
*/
static void
add_refined_tri(const getfem::mesh *mesh, size_type cv,
const std::vector<getfem::base_node>& vertices, int Nrefine,
darray& w, size_type tri_cnt,
const getfem::mesh_fem *pmf, const darray& U)
{
unsigned mesh_dim = mesh->dim();
unsigned qdim = (pmf) ? pmf->get_qdim() : 0;
bgeot::pgeometric_trans pgt = mesh->trans_of_convex(cv);
std::vector<getfem::base_node> pt(Nrefine * Nrefine);
eval_sub_nodes(Nrefine, vertices, pt);
getfem::base_matrix pt_val;
if (pmf) {
if (!pmf->convex_index()[cv])
THROW_ERROR( "convex " << cv+config::base_index() << " has no FEM");
pt_val.resize(qdim*U.getm(), pt.size());
interpolate_on_convex_ref(pmf, cv, pt, U, pt_val);
}
/* apply the geometric transformation to the points, in order to
find their real location on the mesh */
//getfem::base_node P(mesh_dim);
for (size_type i=0; i < pt.size(); ++i) {
pt[i] = pgt->transform(pt[i], mesh->points_of_convex(cv));
/* P.fill(0.0);
for (getfem::size_type j = 0; j < pgt->nb_points(); ++j) {
P.addmul(pgt->poly_vector()[j].eval(pt[i].begin()),
mesh->points_of_convex(cv)[j]);
}*/
//pt[i] = P;
}
size_type refined_tri_cnt = 0;
/* find the three nodes of the each sub-triangle */
for (int layer = 0; layer < Nrefine; layer++) {
for (int itri = 0; itri < layer*2+1; itri++, refined_tri_cnt++) {
getfem::size_type n[3];
if ((itri & 1) == 0) {
/*
. 0
. /\
. 2 /__\ 1
*/
n[0] = (layer*(layer+1))/2 + itri/2;
n[1] = n[0] + layer+1;
n[2] = n[1]+1;
} else {
/*
. 1 ____ 2
. \ /
. \/
. 0
*/
n[1] = (layer*(layer+1))/2 + itri/2;
n[2] = n[1]+1;
n[0] = n[2]+layer+1;
}
if (!(n[0] < pt.size()) || !(n[1] < pt.size()) || !(n[2] < pt.size()))
{ THROW_INTERNAL_ERROR; }
for (unsigned ipt = 0; ipt < 3; ++ipt) {
for (unsigned idim = 0; idim < mesh_dim; ++idim) {
w(unsigned(ipt * mesh_dim + idim),
unsigned(tri_cnt+refined_tri_cnt)) = pt[n[ipt]][idim];
}
if (pmf) {
for (size_type row = 0; row < U.getm(); ++row) {
for (size_type q = 0; q < qdim; ++q) {
w(unsigned(3*mesh_dim + row*qdim*3 + ipt*qdim + q),
unsigned(tri_cnt + refined_tri_cnt)) = pt_val(q,n[ipt]);
}
}
}
}
}
}
}
/*
interpolate a field U defined on mf onto a P1 discontiuous mesh should work
for planar segment/triangle/quadrangle meshes, and faces of volumic meshes
which are a segment/triangle/quadrangle. In order to be able to represent
accurately high order FEMs, a refinment factor can be specified.
the aim is to be fast (the matlab graphic routines don't need any additional
slowness...)
This function can still be used if pmf is NULL, in order to obtain a nice
decomposition of a mesh into triangle (interesting for non-linear geometric
deformations, used by gf_plot_mesh)
*/ void
eval_on_triangulated_surface(const getfem::mesh* mesh, int Nrefine,
const std::vector<convex_face>& cvf,
mexargs_out& out,
const getfem::mesh_fem *pmf, const darray& U) {
unsigned mesh_dim = mesh->dim();
unsigned qdim = (pmf ? pmf->get_qdim() : 0);
if (mesh_dim < 2 || mesh_dim > 3) {
THROW_ERROR( "This function do not handle " <<
mesh_dim << "D meshes (only 2D or 3D)");
}
/* first pass: count nb of triangles */
size_type nb_tri = 0;
for (size_type i=0; i < cvf.size(); ++i) {
bgeot::pconvex_ref cv_ref=mesh->trans_of_convex(cvf[i].cv)->convex_ref();
bgeot::pconvex_structure cv_struc=cv_ref->structure();
if (cvf[i].f != dim_type(-1)) {
cv_struc = cv_struc->faces_structure()[cvf[i].f];
}
if (bgeot::basic_structure(cv_struc)->nb_points() == 2) /* pas les lignes */
continue;
if (cv_struc->dim() > 2)
THROW_ERROR("cannot draw a 3D convex (convex nb " << cvf[i].cv
<< "), please specify "
"faces (see gf_mesh_get(m,'outer faces') for example)");
size_type t_inc = 0;
switch (bgeot::basic_structure(cv_struc)->nb_points()) {
case 3: t_inc = 1; break;
case 4: t_inc =2; break;
}
if (pmf == NULL && mesh->trans_of_convex(cvf[i].cv)->is_linear()) {
nb_tri += t_inc;
} else {
nb_tri += Nrefine*Nrefine*t_inc;
}
}
darray w = out.pop().create_darray(3*mesh_dim + 3*qdim*U.getm(),
unsigned(nb_tri));
/* second pass */
size_type tri_cnt = 0;
std::vector<size_type> ipts;
for (size_type i=0; i < cvf.size(); ++i) {
std::vector<getfem::base_node> vertices(3);
size_type n_refine;
bgeot::pconvex_ref cv_ref=mesh->trans_of_convex(cvf[i].cv)->convex_ref();
bgeot::pconvex_structure cv_struc=cv_ref->structure();
if (pmf == NULL && mesh->trans_of_convex(cvf[i].cv)->is_linear())
n_refine = 1;
else n_refine = Nrefine;
if (cvf[i].f == dim_type(-1)) {
ipts.resize(cv_ref->nb_points());
for (size_type j=0; j < ipts.size(); ++j) ipts[j]=j;
} else {
const bgeot::convex_ind_ct&
pts = cv_struc->ind_points_of_face(short_type(cvf[i].f));
ipts.resize(pts.size());
std::copy(pts.begin(), pts.end(), ipts.begin());
cv_struc = cv_struc->faces_structure()[cvf[i].f];
}
if (bgeot::basic_structure(cv_struc)->nb_points() == 2) /* pas les lignes */
continue;
/* for each point, count the nb of faces it belongs */
std::vector<short_type> fcnt(cv_struc->nb_points(), 0);
for (short_type f = 0; f < cv_struc->nb_faces(); ++f) {
for (short_type fp = 0; fp < cv_struc->nb_points_of_face(f); ++fp) {
fcnt[cv_struc->ind_points_of_face(f)[fp]]++;
}
}
/* remove unused points */
size_type j=0;
for (size_type k=0; k < ipts.size(); ++k) {
if (fcnt[k]==2) {
ipts[j] = ipts[k];
j++;
}
}
ipts.resize(j);
#define DO_TRIANGLE(a,b,c) { \
vertices[0] = cv_ref->points()[ipts[a]]; \
vertices[1] = cv_ref->points()[ipts[b]]; \
vertices[2] = cv_ref->points()[ipts[c]]; \
add_refined_tri(mesh, cvf[i].cv, vertices, \
int(n_refine), \
w, tri_cnt, pmf, U); tri_cnt += n_refine*n_refine; }
if (ipts.size() == 3) {
DO_TRIANGLE(0,1,2);
} else if (ipts.size() == 4) {
DO_TRIANGLE(0,1,2);
DO_TRIANGLE(1,3,2);
} else {
cerr << "convex not handled by eval_on_triangulated_surface: "
<< bgeot::name_of_geometric_trans(mesh->trans_of_convex(cvf[i].cv)) << endl;
//cerr << "basic_structure(cv_struc)->nb_points() = "
// << bgeot::basic_structure(cv_struc)->nb_points() << endl;
// GMM_ASSERT1(false, "");
}
assert(tri_cnt <= nb_tri);
}
GMM_ASSERT1(tri_cnt == nb_tri, "tri_cnt=" << tri_cnt
<< ", nb_tri=" << nb_tri);
}
/* because it's such a pain to launch matlab with a debugger.. */
void attach_gdb() {
# ifdef MAINTAINER_MODE
pid_t pid, parent;
char *cmd;
char cmd_pid[1024];
cmd = ::getenv("GETFEM_DEBUG_CMD"); /* i.e. "xterm -e gdb /path/to/bin/matlab %d"
(xterm because matlab does weird things with its tty (no echo of input..))
*/
if (cmd == NULL) {
cerr << "the environment variable $GETFEM_DEBUG_CMD is not set, "
<< "cancelling the debugger\n"
<< "You should set it to something like \"xterm -e "
<< "gdb /path/to/bin/matlab %d\" (%d will be replaced by the "
<< "matlab pid)\n";
return;
}
parent = ::getpid();
::snprintf(cmd_pid, 1024, cmd, parent);
std::cerr << "internal error detected\nrunning /bin/sh -c \""
<< cmd_pid << "\" ...\n" << std::endl;
switch ((pid=::fork())) {
case -1: std::cerr << "can't fork gdb\n"; return;
case 0: /* child */
{
execlp("/bin/sh", "/bin/sh", "-c", cmd_pid, NULL);
cerr << "execlp failure .. : " << ::strerror(errno) << endl;
exit(1); /* in case the exec failed */
} break;
default:
{
int status;
std::cout << "When you have finished with gdb, "
<< "just quit it (type q)\n";
::waitpid(pid, &status, 0);
std::cout << "gdb done!\n";
} break;
}
# endif /*MAINTAINER_MODE*/
}
const getfem::phyperelastic_law &
abstract_hyperelastic_law_from_name(const std::string &lawname,
size_type N) {
static getfem::phyperelastic_law SVK_AHL =
std::make_shared<getfem::SaintVenant_Kirchhoff_hyperelastic_law>();
static getfem::phyperelastic_law IMR_AHL =
std::make_shared<getfem::Mooney_Rivlin_hyperelastic_law>(false,false);
static getfem::phyperelastic_law CMR_AHL =
std::make_shared<getfem::Mooney_Rivlin_hyperelastic_law>(true,false);
static getfem::phyperelastic_law INH_AHL =
std::make_shared<getfem::Mooney_Rivlin_hyperelastic_law>(false,true);
static getfem::phyperelastic_law CNH_AHL =
std::make_shared<getfem::Mooney_Rivlin_hyperelastic_law>(true,true);
static getfem::phyperelastic_law NHB_AHL =
std::make_shared<getfem::Neo_Hookean_hyperelastic_law>(true); // Bonet
static getfem::phyperelastic_law NHC_AHL =
std::make_shared<getfem::Neo_Hookean_hyperelastic_law>(false); // Ciarlet
static getfem::phyperelastic_law CG_AHL =
std::make_shared<getfem::Ciarlet_Geymonat_hyperelastic_law>();
static getfem::phyperelastic_law GBK_AHL =
std::make_shared<getfem::generalized_Blatz_Ko_hyperelastic_law>();
static getfem::phyperelastic_law PS_SVK_AHL =
std::make_shared<getfem::plane_strain_hyperelastic_law>(SVK_AHL);
static getfem::phyperelastic_law PS_IMR_AHL =
std::make_shared<getfem::plane_strain_hyperelastic_law>(IMR_AHL);
static getfem::phyperelastic_law PS_CMR_AHL =
std::make_shared<getfem::plane_strain_hyperelastic_law>(CMR_AHL);
static getfem::phyperelastic_law PS_INH_AHL =
std::make_shared<getfem::plane_strain_hyperelastic_law>(INH_AHL);
static getfem::phyperelastic_law PS_CNH_AHL =
std::make_shared<getfem::plane_strain_hyperelastic_law>(CNH_AHL);
static getfem::phyperelastic_law PS_NHB_AHL =
std::make_shared<getfem::plane_strain_hyperelastic_law>(NHB_AHL);
static getfem::phyperelastic_law PS_NHC_AHL =
std::make_shared<getfem::plane_strain_hyperelastic_law>(NHC_AHL);
static getfem::phyperelastic_law PS_CG_AHL =
std::make_shared<getfem::plane_strain_hyperelastic_law>(CG_AHL);
static getfem::phyperelastic_law PS_GBK_AHL =
std::make_shared<getfem::plane_strain_hyperelastic_law>(GBK_AHL);
if (cmd_strmatch(lawname, "SaintVenant Kirchhoff") ||
cmd_strmatch(lawname, "svk"))
{ if (N == 2) return PS_SVK_AHL; else return SVK_AHL; }
if (cmd_strmatch(lawname, "Mooney Rivlin") ||
cmd_strmatch(lawname, "mr") ||
cmd_strmatch(lawname, "incompressible Mooney Rivlin") ||
cmd_strmatch(lawname, "imr"))
{ if (N == 2) return PS_IMR_AHL; else return IMR_AHL; }
if (cmd_strmatch(lawname, "compressible Mooney Rivlin") ||
cmd_strmatch(lawname, "cmr"))
{ if (N == 2) return PS_CMR_AHL; else return CMR_AHL; }
if (cmd_strmatch(lawname, "neo Hookean") ||
cmd_strmatch(lawname, "nh") ||
cmd_strmatch(lawname, "compressible neo Hookean") ||
cmd_strmatch(lawname, "cnh"))
{ if (N == 2) return PS_CNH_AHL; else return CNH_AHL; }
if (cmd_strmatch(lawname, "incompressible neo Hookean") ||
cmd_strmatch(lawname, "inh"))
{ if (N == 2) return PS_INH_AHL; else return INH_AHL; }
if (cmd_strmatch(lawname, "neo Hookean Bonet") ||
cmd_strmatch(lawname, "nhb"))
{ if (N == 2) return PS_NHB_AHL; else return NHB_AHL; }
if (cmd_strmatch(lawname, "neo Hookean Ciarlet") ||
cmd_strmatch(lawname, "nhc"))
{ if (N == 2) return PS_NHC_AHL; else return NHC_AHL; }
if (cmd_strmatch(lawname, "Ciarlet Geymonat") ||
cmd_strmatch(lawname, "cg"))
{ if (N == 2) return PS_CG_AHL; else return CG_AHL; }
if (cmd_strmatch(lawname, "generalized Blatz Ko") ||
cmd_strmatch(lawname, "gbk"))
{ if (N == 2) return PS_GBK_AHL; else return GBK_AHL; }
THROW_BADARG(lawname <<
" is not the name of a known hyperelastic law. \\"
"Valid names are: SaintVenant Kirchhoff, Mooney Rivlin, "
"neo Hookean or Ciarlet Geymonat");
return SVK_AHL;
}
/** This function return the right projection type chosen which could only
be for the moment the Von Mises projection. */
const getfem::pconstraints_projection &
abstract_constraints_projection_from_name(const std::string &projname) {
static getfem::pconstraints_projection
VM_proj = std::make_shared<getfem::VM_projection>();
if (cmd_strmatch(projname, "Von Mises") ||
cmd_strmatch(projname, "VM")) return VM_proj;
THROW_BADARG(projname <<
" is not the name of a known constraints projection. \\"
"Valid names are: Von mises or VM");
return VM_proj;
}
/*
bool interruptible_iteration::finished(double nr) {
if (is_cancel_flag_set()) {
//GFI_WARNING("Interrupted by Ctrl-C");
THROW_INTERRUPTED();
}
return gmm::iteration::finished(nr);
}
*/
static void ctrl_c_iteration_callback(const gmm::iteration &) {
if (is_cancel_flag_set()) {
THROW_INTERRUPTED();
}
}
interruptible_iteration::interruptible_iteration(double r) :
gmm::iteration(r) {
gmm::iteration::set_callback(ctrl_c_iteration_callback);
}
}
|