1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
|
/*===========================================================================
Copyright (C) 2006-2016 Yves Renard, Julien Pommier.
This file is a part of GetFEM++
GetFEM++ is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
#include <getfemint_misc.h>
#include <getfem/getfem_derivatives.h>
#include <getfem/getfem_interpolation.h>
#include <getfem/getfem_assembling.h>
#include <getfem/getfem_mesh_slice.h>
#include <getfem/getfem_error_estimate.h>
#include <getfem/getfem_convect.h>
using namespace getfemint;
static void
error_for_non_lagrange_elements(const getfem::mesh_fem &mf,
bool warning_only = false) {
size_type cnt=0, total=0, cnt_no_fem=0;
for (dal::bv_visitor cv(mf.linked_mesh().convex_index());
!cv.finished(); ++cv) {
if (!mf.convex_index()[cv]) cnt_no_fem++;
else if (!mf.fem_of_element(cv)->is_lagrange()) cnt++;
total++;
}
if (cnt) {
if (!warning_only) {
THROW_ERROR("Error: " << cnt << " elements on " << total << " are NOT "
"lagrange elements -- Unable to compute a derivative");
} else {
GFI_WARNING(cnt << " elements on " << total
<< " are NOT lagrange elements");
}
}
// Test suppressed. If ones want to interpolate on a specific region
// for instance.
// if (cnt_no_fem) {
// if (!warning_only) {
// THROW_ERROR("Error: " << cnt_no_fem << " elements on " << total << " have NO FEM!");
// } else {
// GFI_WARNING(cnt_no_fem << " elements on " << total << " have NO FEM");
// }
// }
}
template <typename T> static void
gf_compute_gradient(getfemint::mexargs_out& out,
const getfem::mesh_fem& mf,
const getfem::mesh_fem& mf_grad,
const garray<T> &U,
size_type qm) {
garray<T> DU;
unsigned N = mf.linked_mesh().dim();
array_dimensions dims(N);
unsigned qqdim = unsigned(dims.push_back(U,0,U.ndim()-1,true));
if (qm != 1) dims.push_back(unsigned(qm));
dims.push_back(unsigned(mf_grad.nb_dof()));
DU = out.pop().create_array(dims, T());
std::vector<T> tmp(mf_grad.nb_dof() * qm * N);
for (unsigned qq=0; qq < qqdim; ++qq) {
// compute_gradient also checks that the meshes are the same
getfem::compute_gradient(mf, mf_grad, gmm::sub_vector(U, gmm::sub_slice(qq, mf.nb_dof(),qqdim)), tmp);
for (unsigned j=0, pos=qq*N; j < tmp.size(); j+=N) {
for (unsigned k=0; k < N; ++k) DU[pos+k] = tmp[j+k];
pos += qqdim*N;
}
}
}
template <typename T> static void
gf_compute_hessian(getfemint::mexargs_out& out,
const getfem::mesh_fem& mf,
const getfem::mesh_fem& mf_hess,
const garray<T> &U,
size_type qm) {
garray<T> D2U;
unsigned N = mf.linked_mesh().dim();
array_dimensions dims(N); dims.push_back(N);
unsigned qqdim = unsigned(dims.push_back(U,0,U.ndim()-1,true));
if (qm != 1) dims.push_back(unsigned(qm));
dims.push_back(unsigned(mf_hess.nb_dof()));
D2U = out.pop().create_array(dims, T());
std::vector<T> tmp(mf_hess.nb_dof() * qm * N * N);
for (unsigned qq=0; qq < qqdim; ++qq) {
// compute_gradient also checks that the meshes are the same
getfem::compute_hessian(mf, mf_hess,
gmm::sub_vector(U, gmm::sub_slice(qq, mf.nb_dof(),
qqdim)), tmp);
for (unsigned j=0, pos=qq*N*N; j < tmp.size(); j+=N*N) {
for (unsigned k=0; k < N*N; ++k) D2U[pos+k] = tmp[j+k];
pos += qqdim*N*N;
}
}
}
template <typename T> static void
gf_interpolate(getfemint::mexargs_in& in, getfemint::mexargs_out& out,
const getfem::mesh_fem& mf, const garray<T> &U) {
array_dimensions dims;
dims.push_back(U,0,U.ndim()-1,true);
if (is_meshfem_object(in.front())) {
const getfem::mesh_fem& mf_dest = *to_meshfem_object(in.pop());
error_for_non_lagrange_elements(mf_dest, true);
size_type qmult = mf.get_qdim() / mf_dest.get_qdim();
if (qmult == 0)
THROW_ERROR("Cannot interpolate a mesh_fem with qdim = " <<
int(mf.get_qdim()) << " onto a mesh_fem whose qdim is "
<< int(mf_dest.get_qdim()));
if (qmult != 1) dims.push_back(unsigned(qmult));
dims.push_back(unsigned(mf_dest.nb_dof()));
dims.opt_transform_col_vect_into_row_vect();
garray<T> V = out.pop().create_array(dims,T());
getfem::interpolation(mf, mf_dest, U, V);
}
else if (is_slice_object(in.front())) {
getfem::stored_mesh_slice *sl = to_slice_object(in.pop());
for (size_type i=0; i < sl->nb_convex(); ++i)
if (!mf.linked_mesh().convex_index().is_in(sl->convex_num(i)))
THROW_BADARG("the slice is not compatible with the mesh_fem "
"(cannot find convex " << sl->convex_num(i) << ")");
if (mf.get_qdim() != 1) dims.push_back(mf.get_qdim());
dims.push_back(unsigned(sl->nb_points()));
dims.opt_transform_col_vect_into_row_vect();
garray<T> V = out.pop().create_array(dims, T());
sl->interpolate(mf, U, V);
}
else {
size_type N = mf.linked_mesh().dim();
darray st = in.pop().to_darray();
std::vector<double> PTS(st.begin(), st.end());
size_type nbpoints = gmm::vect_size(PTS) / N;
getfem::base_node p(N);
getfem::mesh_trans_inv mti(mf.linked_mesh());
for (size_type i = 0; i < nbpoints; ++i) {
gmm::copy(gmm::sub_vector(PTS, gmm::sub_interval(i*N, N)), p);
// cout << "adding point" << p << endl;
mti.add_point(p);
}
size_type qmult = mf.get_qdim();
if (qmult != 1) dims.push_back(unsigned(qmult));
dims.push_back(unsigned(nbpoints));
dims.opt_transform_col_vect_into_row_vect();
garray<T> V = out.pop().create_array(dims,T());
getfem::base_matrix Maux;
// cout << "begin interpolation, qmult = " << qmult << endl;
getfem::interpolation(mf, mti, U, V, Maux, 0);
// cout << "end interpolation" << endl;
}
// else THROW_BADARG("expecting a mesh_fem or a mesh_slice for interpolation");
}
bool U_is_a_vector(const rcarray &U, const std::string& cmd) {
if (U.sizes().size() == U.sizes().dim(-1)) return true;
else THROW_BADARG("the U argument for the function " << cmd
<< " must be a one-dimensional array");
return false;
}
/*@GFDOC
@ARGS{@tmf MF, @vec U}
Various computations involving the solution U to a finite element problem.
@*/
// Object for the declaration of a new sub-command.
struct sub_gf_compute : virtual public dal::static_stored_object {
int arg_in_min, arg_in_max, arg_out_min, arg_out_max;
virtual void run(getfemint::mexargs_in& in,
getfemint::mexargs_out& out,
const getfem::mesh_fem *mf,
rcarray U) = 0;
};
typedef std::shared_ptr<sub_gf_compute> psub_command;
// Function to avoid warning in macro with unused arguments.
template <typename T> static inline void dummy_func(T &) {}
#define sub_command(name, arginmin, arginmax, argoutmin, argoutmax, code) { \
struct subc : public sub_gf_compute { \
virtual void run(getfemint::mexargs_in& in, \
getfemint::mexargs_out& out, \
const getfem::mesh_fem *mf, rcarray U) \
{ dummy_func(in); dummy_func(out); code } \
}; \
psub_command psubc = std::make_shared<subc>(); \
psubc->arg_in_min = arginmin; psubc->arg_in_max = arginmax; \
psubc->arg_out_min = argoutmin; psubc->arg_out_max = argoutmax; \
subc_tab[cmd_normalize(name)] = psubc; \
}
void gf_compute(getfemint::mexargs_in& m_in, getfemint::mexargs_out& m_out) {
typedef std::map<std::string, psub_command > SUBC_TAB;
static SUBC_TAB subc_tab;
if (subc_tab.size() == 0) {
/*@FUNC n = ('L2 norm', @tmim mim[, @mat CVids])
Compute the L2 norm of the (real or complex) field `U`.
If `CVids` is given, the norm will be computed only on the listed
convexes.@*/
sub_command
("L2 norm", 1, 2, 0, 1,
U_is_a_vector(U, "L2 norm");
const getfem::mesh_im *mim = to_meshim_object(in.pop());
dal::bit_vector bv = in.remaining() ?
in.pop().to_bit_vector(&mf->convex_index()) : mf->convex_index();
if (!U.is_complex())
out.pop().from_scalar(getfem::asm_L2_norm(*mim, *mf, U.real(), bv));
else out.pop().from_scalar(getfem::asm_L2_norm(*mim, *mf, U.cplx(),bv));
);
/*@FUNC n = ('L2 dist', @tmim mim, @tmf mf2, @vec U2[, @mat CVids])
Compute the L2 distance between `U` and `U2`.
If `CVids` is given, the norm will be computed only on the listed
convexes.@*/
sub_command
("L2 dist", 3, 4, 0, 1,
U_is_a_vector(U, "L2 dist");
const getfem::mesh_im *mim = to_meshim_object(in.pop());
const getfem::mesh_fem *mf_2 = to_meshfem_object(in.pop());
if (!U.is_complex()) {
darray st = in.pop().to_darray();
std::vector<double> V(st.begin(), st.end());
dal::bit_vector bv = in.remaining() ?
in.pop().to_bit_vector(&mf->convex_index()) : mf->convex_index();
out.pop().from_scalar(getfem::asm_L2_dist(*mim, *mf, U.real(),
*mf_2, V, bv));
} else {
GMM_ASSERT1(false, "Sorry, complex version to be done");
// carray st = in.pop().to_carray();
// std::vector<std::complex<double> > V(st.begin(), st.end());
// dal::bit_vector bv = in.remaining() ?
// in.pop().to_bit_vector(&mf->convex_index()) : mf->convex_index();
// out.pop().from_scalar(getfem::asm_L2_dist(*mim, *mf, U.cplx(),
// *mf_2, V, bv));
}
);
/*@FUNC n = ('H1 semi norm', @tmim mim[, @mat CVids])
Compute the L2 norm of grad(`U`).
If `CVids` is given, the norm will be computed only on the listed
convexes.@*/
sub_command
("H1 semi norm", 1, 2, 0, 1,
U_is_a_vector(U, "H1 semi norm");
const getfem::mesh_im *mim = to_meshim_object(in.pop());
dal::bit_vector bv = in.remaining() ?
in.pop().to_bit_vector(&mf->convex_index()) : mf->convex_index();
if (!U.is_complex())
out.pop().from_scalar(getfem::asm_H1_semi_norm(*mim, *mf,
U.real(), bv));
else out.pop().from_scalar(getfem::asm_H1_semi_norm(*mim,
*mf, U.cplx(), bv));
);
/*@FUNC n = ('H1 semi dist', @tmim mim, @tmf mf2, @vec U2[, @mat CVids])
Compute the semi H1 distance between `U` and `U2`.
If `CVids` is given, the norm will be computed only on the listed
convexes.@*/
sub_command
("H1 semi dist", 3, 4, 0, 1,
U_is_a_vector(U, "H1 semi dist");
const getfem::mesh_im *mim = to_meshim_object(in.pop());
const getfem::mesh_fem *mf_2 = to_meshfem_object(in.pop());
if (!U.is_complex()) {
darray st = in.pop().to_darray();
std::vector<double> V(st.begin(), st.end());
dal::bit_vector bv = in.remaining() ?
in.pop().to_bit_vector(&mf->convex_index()) : mf->convex_index();
out.pop().from_scalar(getfem::asm_H1_semi_dist(*mim, *mf, U.real(),
*mf_2, V, bv));
} else {
GMM_ASSERT1(false, "Sorry, complex version to be done");
// carray st = in.pop().to_carray();
// std::vector<std::complex<double> > V(st.begin(), st.end());
// dal::bit_vector bv = in.remaining() ?
// in.pop().to_bit_vector(&mf->convex_index()) : mf->convex_index();
// out.pop().from_scalar(getfem::asm_L2_dist(*mim, *mf, U.cplx(),
// *mf_2, V, bv));
}
);
/*@FUNC n = ('H1 norm', @tmim mim[, @mat CVids])
Compute the H1 norm of `U`.
If `CVids` is given, the norm will be computed only on the listed
convexes.@*/
sub_command
("H1 norm", 1, 2, 0, 1,
U_is_a_vector(U, "H1 norm");
const getfem::mesh_im *mim = to_meshim_object(in.pop());
dal::bit_vector bv = in.remaining() ?
in.pop().to_bit_vector(&mf->convex_index()) : mf->convex_index();
if (!U.is_complex())
out.pop().from_scalar(getfem::asm_H1_norm(*mim, *mf, U.real(), bv));
else out.pop().from_scalar(getfem::asm_H1_norm(*mim, *mf,
U.cplx(), bv));
);
/*@FUNC n = ('H2 semi norm', @tmim mim[, @mat CVids])
Compute the L2 norm of D^2(`U`).
If `CVids` is given, the norm will be computed only on the listed
convexes.@*/
sub_command
("H2 semi norm", 1, 2, 0, 1,
U_is_a_vector(U, "H2 semi norm");
const getfem::mesh_im *mim = to_meshim_object(in.pop());
dal::bit_vector bv = in.remaining() ?
in.pop().to_bit_vector(&mf->convex_index()) : mf->convex_index();
if (!U.is_complex())
out.pop().from_scalar(getfem::asm_H2_semi_norm(*mim, *mf,
U.real(), bv));
else out.pop().from_scalar(getfem::asm_H2_semi_norm(*mim, *mf,
U.cplx(), bv));
);
/*@FUNC n = ('H2 norm', @tmim mim[, @mat CVids])
Compute the H2 norm of `U`.
If `CVids` is given, the norm will be computed only on the listed
convexes.@*/
sub_command
("H2 norm", 1, 2, 0, 1,
U_is_a_vector(U, "H2 norm");
const getfem::mesh_im *mim = to_meshim_object(in.pop());
dal::bit_vector bv = in.remaining() ?
in.pop().to_bit_vector(&mf->convex_index()) : mf->convex_index();
if (!U.is_complex())
out.pop().from_scalar(getfem::asm_H2_norm(*mim, *mf, U.real(), bv));
else out.pop().from_scalar(getfem::asm_H2_norm(*mim,*mf, U.cplx(), bv));
);
/*@FUNC DU = ('gradient', @tmf mf_du)
Compute the gradient of the field `U` defined on @tmf `mf_du`.
The gradient is interpolated on the @tmf `mf_du`, and returned in
`DU`. For example, if `U` is defined on a P2 @tmf, `DU` should be
evaluated on a P1-discontinuous @tmf. `mf` and `mf_du` should
share the same mesh.
`U` may have any number of dimensions (i.e. this function is not
restricted to the gradient of scalar fields, but may also be used
for tensor fields). However the last dimension of `U` has to be
equal to the number of dof of `mf`. For example, if `U` is a
[3x3xNmf] array (where Nmf is the number of dof of `mf`), `DU` will
be a [Nx3x3[xQ]xNmf_du] array, where N is the dimension of the mesh,
Nmf_du is the number of dof of `mf_du`, and the optional Q dimension
is inserted if `Qdim_mf != Qdim_mf_du`, where Qdim_mf is the Qdim of
`mf` and Qdim_mf_du is the Qdim of `mf_du`.@*/
sub_command
("gradient", 1, 1, 0, 1,
const getfem::mesh_fem *mf_grad = to_meshfem_object(in.pop());
error_for_non_lagrange_elements(*mf_grad, true);
size_type qm
= (mf_grad->get_qdim() == mf->get_qdim()) ? 1 : mf->get_qdim();
if (!U.is_complex())
gf_compute_gradient<scalar_type>(out, *mf, *mf_grad, U.real(), qm);
else
gf_compute_gradient<complex_type>(out, *mf, *mf_grad, U.cplx(), qm);
);
/*@FUNC HU = ('hessian', @tmf mf_h)
Compute the hessian of the field `U` defined on @tmf `mf_h`.
See also ::COMPUTE('gradient', @tmf mf_du).@*/
sub_command
("hessian", 1, 1, 0, 1,
const getfem::mesh_fem *mf_hess = to_meshfem_object(in.pop());
error_for_non_lagrange_elements(*mf_hess, true);
size_type qm = (mf_hess->get_qdim() == mf->get_qdim()) ? 1 : mf->get_qdim();
if (!U.is_complex())
gf_compute_hessian<scalar_type>(out, *mf, *mf_hess, U.real(), qm);
else
gf_compute_hessian<complex_type>(out, *mf, *mf_hess, U.cplx(), qm);
);
/*@FUNC UP = ('eval on triangulated surface', @int Nrefine, [@vec CVLIST])
[OBSOLETE FUNCTION! will be removed in a future release]
Utility function designed for 2D triangular meshes : returns a list
of triangles coordinates with interpolated U values. This can be
used for the accurate visualization of data defined on a
discontinous high order element. On output, the six first rows of UP
contains the triangle coordinates, and the others rows contain the
interpolated values of U (one for each triangle vertex) CVLIST may
indicate the list of convex number that should be consider, if not
used then all the mesh convexes will be used. U should be a row
vector.
@*/
sub_command
("eval on triangulated surface", 1, 2, 0, 1,
int Nrefine = in.pop().to_integer(1, 1000);
std::vector<convex_face> cvf;
if (in.remaining() && !in.front().is_string()) {
iarray v = in.pop().to_iarray(-1, -1);
build_convex_face_lst(mf->linked_mesh(), cvf, &v);
} else build_convex_face_lst(mf->linked_mesh(), cvf, 0);
if (U.sizes().getn() != mf->nb_dof()) {
THROW_BADARG("Wrong number of columns (need transpose ?)");
}
eval_on_triangulated_surface(&mf->linked_mesh(), Nrefine, cvf, out,
mf, U.real());
);
/*@FUNC Ui = ('interpolate on', {@tmf mfi | @tsl sli | @vec pts})
Interpolate a field on another @tmf or a @tsl or a list of points.
- Interpolation on another @tmf `mfi`:
`mfi` has to be Lagrangian. If `mf` and `mfi` share the same
mesh object, the interpolation will be much faster.
- Interpolation on a @tsl `sli`:
this is similar to interpolation on a refined P1-discontinuous
mesh, but it is much faster. This can also be used with
SLICE:INIT('points') to obtain field values at a given set of
points.
- Interpolation on a set of points `pts`
See also ::ASM('interpolation matrix')
@*/
sub_command
("interpolate on", 1, 1, 0, 1,
if (!U.is_complex()) gf_interpolate(in, out, *mf, U.real());
else gf_interpolate(in, out, *mf, U.cplx());
);
/*@FUNC Ue = ('extrapolate on', @tmf mfe)
Extrapolate a field on another @tmf.
If the mesh of `mfe` is stricly included in the mesh of `mf`, this
function does stricly the same job as ::COMPUTE('interpolate_on').
However, if the mesh of `mfe` is not exactly included in `mf`
(imagine interpolation between a curved refined mesh and a coarse
mesh), then values which are outside `mf` will be
extrapolated.
See also ::ASM('extrapolation matrix')@*/
sub_command
("extrapolate on", 1, 1, 0, 1,
const getfem::mesh_fem *mf_dest = to_meshfem_object(in.pop());
error_for_non_lagrange_elements(*mf_dest, true);
if (!U.is_complex()) {
darray V = out.pop().create_darray(1, unsigned(mf_dest->nb_dof()));
getfem::interpolation(*mf, *mf_dest, U.real(), V, 2);
} else {
carray V = out.pop().create_carray(1, unsigned(mf_dest->nb_dof()));
getfem::interpolation(*mf, *mf_dest, U.cplx(), V, 2);
}
);
/*@FUNC E = ('error estimate', @tmim mim)
Compute an a posteriori error estimate.
Currently there is only one which is available: for each convex,
the jump of the normal derivative is integrated on its faces.@*/
sub_command
("error_estimate", 1, 1, 0, 1,
const getfem::mesh_im &mim = *(to_meshim_object(in.pop()));
darray err =
out.pop().create_darray_h
(unsigned(mim.linked_mesh().convex_index().last_true()+1));
if (!U.is_complex())
getfem::error_estimate(mim, *mf, U.real(), err, mim.convex_index());
else {
getfem::base_vector err_imag(gmm::vect_size(err));
getfem::error_estimate(mim, *mf, gmm::imag_part(U.cplx()), err_imag,
mim.convex_index());
getfem::error_estimate(mim, *mf, gmm::real_part(U.cplx()), err,
mim.convex_index());
gmm::add(err_imag, err);
}
);
#ifdef EXPERIMENTAL_PURPOSE_ONLY
/*@FUNC E = ('error estimate nitsche', @tmim mim, @int GAMMAC, @int GAMMAN, @scalar lambda_, @scalar mu_, @scalar gamma0, @scalar f_coeff, @scalar vertical_force)
Compute an a posteriori error estimate in the case of Nitsche method.
Currently there is only one which is available: for each convex,
the jump of the normal derivative is integrated on its faces.@*/
sub_command
("error_estimate_nitsche", 8, 8, 0, 1,
const getfem::mesh_im &mim = *to_meshim_object(in.pop());
int GAMMAC = in.pop().to_integer();
int GAMMAN = in.pop().to_integer();
scalar_type lambda = in.pop().to_scalar();
scalar_type mu = in.pop().to_scalar();
scalar_type gamma0 = in.pop().to_scalar();
scalar_type f_coeff = in.pop().to_scalar();
scalar_type vertical_force = in.pop().to_scalar();
unsigned si = unsigned(mim.linked_mesh().convex_index().last_true()+1);
darray err =
out.pop().create_darray_h(si);
getfem::base_vector ERR(si);
getfem::base_vector UU(U.real().size());
gmm::copy(U.real(), UU);
getfem::error_estimate_nitsche(mim, *mf, UU, GAMMAC, GAMMAN, lambda, mu, gamma0, f_coeff,vertical_force, ERR);
gmm::copy(ERR, err);
);
#endif
/*@FUNC ('convect', @tmf mf_v, @dvec V, @scalar dt, @int nt[, @str option[, @dvec per_min, @dvec per_max]])
Compute a convection of `U` with regards to a steady state velocity
field `V` with a Characteristic-Galerkin method. The result is returned
in-place in `U`.
This method is restricted to pure Lagrange fems for U. `mf_v` should
represent a continuous finite element method. `dt` is the integration time
and `nt` is the number of integration step on the caracteristics. `option`
is an option for the part of the boundary where there is a re-entrant
convection.
`option = 'extrapolation'` for an extrapolation on the nearest element,
`option = 'unchanged'` for a constant value on that boundary or
`option = 'periodicity'` for a peridiodic boundary. For this latter option
the two vectors per_min, per_max has to be given and represent the limits
of the periodic domain (on components where per_max[k] < per_min[k]
no operation is done).
This method is rather dissipative, but stable.
@*/
sub_command
("convect", 4, 7, 0, 0,
const getfem::mesh_fem *mf_v = to_meshfem_object(in.pop());
rcarray V = in.pop().to_rcarray();
scalar_type dt = in.pop().to_scalar();
size_type nt = in.pop().to_integer(0,100000);
std::string option;
if (in.remaining()) option = in.pop().to_string();
getfem::convect_boundary_option opt;
if (option.size() == 0)
opt = getfem::CONVECT_EXTRAPOLATION;
else if (cmd_strmatch(option, "extrapolation"))
opt = getfem::CONVECT_EXTRAPOLATION;
else if (cmd_strmatch(option, "periodicity"))
opt = getfem::CONVECT_PERIODICITY;
else if (cmd_strmatch(option, "unchanged"))
opt = getfem::CONVECT_UNCHANGED;
else
THROW_BADARG("Bad option " << option<< " for convect command. "
"should be 'extrapolation', 'unchanged' or "
"'periodicity'");
getfem::base_node per_min;
getfem::base_node per_max;
if (in.remaining()) {
rcarray pmin = in.pop().to_rcarray();
rcarray pmax = in.pop().to_rcarray();
size_type N = mf_v->linked_mesh().dim();
per_min.resize(N);
per_max.resize(N);
gmm::copy(pmin.real(), per_min);
gmm::copy(pmax.real(), per_max);
}
if (U.is_complex() || V.is_complex())
THROW_BADARG("Sorry, complex version of convect to be interfaced");
getfem::convect(*mf, U.real(), *mf_v, V.real(),
dt, nt, opt, per_min, per_max);
);
}
if (m_in.narg() < 3) THROW_BADARG( "Wrong number of input arguments");
const getfem::mesh_fem *mf = to_meshfem_object(m_in.pop());
rcarray U = m_in.pop().to_rcarray();
m_in.last_popped().check_trailing_dimension(int(mf->nb_dof()));
std::string init_cmd = m_in.pop().to_string();
std::string cmd = cmd_normalize(init_cmd);
SUBC_TAB::iterator it = subc_tab.find(cmd);
if (it != subc_tab.end()) {
check_cmd(cmd, it->first.c_str(), m_in, m_out, it->second->arg_in_min,
it->second->arg_in_max, it->second->arg_out_min,
it->second->arg_out_max);
it->second->run(m_in, m_out, mf, U);
}
else bad_cmd(init_cmd);
}
/*@MATLABFUNC [U2[,MF2,[,X[,Y[,Z]]]]] = ('interpolate on Q1 grid', {'regular h', hxyz | 'regular N', Nxyz | X[,Y[,Z]]})
Creates a cartesian Q1 mesh fem and interpolates U on it. The
returned field U2 is organized in a matrix such that in can be drawn
via the MATLAB command 'pcolor'. The first dimension is the Qdim of
MF (i.e. 1 if U is a scalar field)
example (mf_u is a 2D mesh_fem):
>> Uq=gf_compute(mf_u, U, 'interpolate on Q1 grid', 'regular h', [.05, .05]);
>> pcolor(squeeze(Uq(1,:,:)));
@*/
/*@MATLABEXT
if (nargin>=3 & strcmpi(varargin{3}, 'interpolate on Q1 grid')),
[varargout{1:nargout}]=gf_compute_Q1grid_interp(varargin{[1 2 4:nargin]});
return;
end;
@*/
|