1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
/*===========================================================================
Copyright (C) 2006-2016 Yves Renard, Julien Pommier.
This file is a part of GetFEM++
GetFEM++ is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
===========================================================================*/
#include <getfemint.h>
#include <getfem/bgeot_geometric_trans.h>
using namespace getfemint;
/*@GFDOC
General function for querying information about geometric transformations
objects.
@*/
// Object for the declaration of a new sub-command.
struct sub_gf_geotrans : virtual public dal::static_stored_object {
int arg_in_min, arg_in_max, arg_out_min, arg_out_max;
virtual void run(getfemint::mexargs_in& in,
getfemint::mexargs_out& out,
const bgeot::pgeometric_trans &pgt) = 0;
};
typedef std::shared_ptr<sub_gf_geotrans> psub_command;
// Function to avoid warning in macro with unused arguments.
template <typename T> static inline void dummy_func(T &) {}
#define sub_command(name, arginmin, arginmax, argoutmin, argoutmax, code) { \
struct subc : public sub_gf_geotrans { \
virtual void run(getfemint::mexargs_in& in, \
getfemint::mexargs_out& out, \
const bgeot::pgeometric_trans &pgt) \
{ dummy_func(in); dummy_func(out); code } \
}; \
psub_command psubc = std::make_shared<subc>(); \
psubc->arg_in_min = arginmin; psubc->arg_in_max = arginmax; \
psubc->arg_out_min = argoutmin; psubc->arg_out_max = argoutmax; \
subc_tab[cmd_normalize(name)] = psubc; \
}
void gf_geotrans_get(getfemint::mexargs_in& m_in,
getfemint::mexargs_out& m_out) {
typedef std::map<std::string, psub_command > SUBC_TAB;
static SUBC_TAB subc_tab;
if (subc_tab.size() == 0) {
/*@RDATTR d = ('dim')
Get the dimension of the @tgt.
This is the dimension of the source space, i.e. the dimension of
the reference convex.@*/
sub_command
("dim", 0, 0, 0, 1,
out.pop().from_scalar(pgt->dim());
);
/*@RDATTR b = ('is_linear')
Return 0 if the @tgt is not linear.@*/
sub_command
("is_linear", 0, 0, 0, 1,
out.pop().from_scalar(pgt->is_linear() ? 1. : 0.);
);
/*@RDATTR n = ('nbpts')
Return the number of points of the @tgt.@*/
sub_command
("nbpts", 0, 0, 0, 1,
out.pop().from_scalar(double(pgt->nb_points()));
);
/*@GET P = ('pts')
Return the reference convex points of the @tgt.
The points are stored in the columns of the output matrix.@*/
sub_command
("pts", 0, 0, 0, 1,
out.pop().from_vector_container(pgt->convex_ref()->points());
);
/*@GET N = ('normals')
Get the normals for each face of the reference convex of the @tgt.
The normals are stored in the columns of the output matrix.@*/
sub_command
("normals", 0, 0, 0, 1,
out.pop().from_vector_container(pgt->normals());
);
/*@GET Pt = ('transform',@mat G, @mat Pr)
Apply the @tgt to a set of points.
`G` is the set of vertices of the real convex, `Pr` is the set
of points (in the reference convex) that are to be transformed.
The corresponding set of points in the real convex is returned.@*/
sub_command
("transform", 2, 2, 0, 1,
getfem::base_matrix G = in.pop().to_darray(-1, -1).row_col_to_bm();
darray pts = in.pop().to_darray(pgt->dim(), -1);
darray w = out.pop().create_darray(unsigned(G.nrows()), pts.getn());
for (unsigned i=0; i < pts.getn(); ++i) {
getfem::base_node P = pgt->transform(pts.col_to_bn(i), G);
for (size_type k=0; k < P.size(); ++k) w(k,i) = P[k];
}
);
/*@GET s = ('char')
Output a (unique) string representation of the @tgt.
This can be used to perform comparisons between two
different @tgt objects. @*/
sub_command
("char", 0, 0, 0, 1,
std::string s = bgeot::name_of_geometric_trans(pgt);
out.pop().from_string(s.c_str());
);
/*@GET ('display')
displays a short summary for a @tgt object.@*/
sub_command
("display", 0, 0, 0, 0,
infomsg() << "gfGeoTrans object " << bgeot::name_of_geometric_trans(pgt)
<< " in dimension " << int(pgt->dim())
<< ", with " << pgt->nb_points() << " points \n";
);
}
if (m_in.narg() < 2) THROW_BADARG( "Wrong number of input arguments");
bgeot::pgeometric_trans pgt = to_geotrans_object(m_in.pop());
std::string init_cmd = m_in.pop().to_string();
std::string cmd = cmd_normalize(init_cmd);
SUBC_TAB::iterator it = subc_tab.find(cmd);
if (it != subc_tab.end()) {
check_cmd(cmd, it->first.c_str(), m_in, m_out, it->second->arg_in_min,
it->second->arg_in_max, it->second->arg_out_min,
it->second->arg_out_max);
it->second->run(m_in, m_out, pgt);
}
else bad_cmd(init_cmd);
}
|