File: demo_Navier_Stokes.m

package info (click to toggle)
getfem%2B%2B 5.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 32,668 kB
  • ctags: 20,930
  • sloc: cpp: 110,660; ansic: 72,312; python: 6,064; sh: 3,608; perl: 1,710; makefile: 1,343
file content (157 lines) | stat: -rw-r--r-- 5,705 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
% Copyright (C) 2011-2016 Mariama Ndiaye, Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
% under  the  terms  of the  GNU  Lesser General Public License as published
% by  the  Free Software Foundation;  either version 3 of the License,  or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program  is  distributed  in  the  hope  that it will be useful,  but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You  should  have received a copy of the GNU Lesser General Public License
% along  with  this program;  if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
%
%  Transient Navier-Stokes equation on a driven cavity with two numerical
%  scheme : a projection and a semi-implicite scheme. Without using the
%  bricks.
%
%  This program is used to check that matlab-getfem is working. This is
%  also a good example of use of GetFEM++.
%

clear all;
gf_workspace('clear all');
NX=20;        % Space resoltuion
Dt=0.02;     % Time step
T = 10;       % Time interval
nu=0.005;     % Viscosity
v = 30;       % Driven velocity
scheme = 1;   % 1 : Projection scheme.
              % 2 : Semi-implicit scheme
rho = 2;      % density
g = 9.81;     % gravity constant

%m=gf_mesh('cartesian', [0:1/NX:1],[0:1/NX:1]); 
m = gf_mesh('triangles grid',[0:1/NX:1],[0:1/NX:1]);
border = gf_mesh_get(m,'outer faces');
% mark it as boundary #1
gf_mesh_set(m, 'boundary', 1, border);
gf_plot_mesh(m, 'regions', [1]); % the boundary edges appears in red


% create mesh_fem objects
mf_u = gfMeshFem(m,2);  % For the velocity.
mf_p = gfMeshFem(m,1);  % For the pressure.
mf_f = gfMeshFem(m,1);  % For the external forces.

%mim=gf_mesh_im(m,  gf_integ('IM_GAUSS_PARALLELEPIPED(2, 2)'));
mim = gf_mesh_im(m, gf_integ('IM_HCT_COMPOSITE(IM_TRIANGLE(13))'));

% assign the fems to all convexes of the mesh_fems
if (scheme == 1)
  gf_mesh_fem_set(mf_u,'fem',gf_fem('FEM_PK(2,1)'));
  gf_mesh_fem_set(mf_p,'fem',gf_fem('FEM_PK(2,1)'));
  gf_mesh_fem_set(mf_f,'fem',gf_fem('FEM_PK(2,1)'));
elseif (scheme == 2)
  gf_mesh_fem_set(mf_u,'fem',gf_fem('FEM_PK(2,2)'));
  gf_mesh_fem_set(mf_p,'fem',gf_fem('FEM_PK(2,1)'));
  gf_mesh_fem_set(mf_f,'fem',gf_fem('FEM_PK(2,1)'));
end;

% Assembly

Fd = [gf_mesh_fem_get(mf_f, 'eval', { 0}); gf_mesh_fem_get(mf_f, 'eval', { rho*g })];
FD =Fd;
U = zeros(gf_mesh_fem_get(mf_u, 'nbdof'), 1); % initial condition

M=rho*gf_asm('mass matrix',mim,mf_u) / Dt;
K=nu*gf_asm('volumic','M(#1,#1)+=comp(vGrad(#1).vGrad(#1))(:,i,j,:,i,j)', mim, mf_u);
F=gf_asm('volumic source',mim,mf_u,mf_f,Fd); %#1 methode d'elmt fini 1, vBase vecteur de base de methode d'EF 1, vGrad grad vect
Kp=gf_asm('volumic','M(#1,#1)+=comp(Grad(#1).Grad(#1))(:,i,:,i)', mim, mf_p);
D=gf_asm('volumic','M(#1,#2)+=comp(Base(#1).vGrad(#2))(:,:,i,i)', mim, mf_p, mf_u);
B=gf_asm('volumic','M(#1,#2)+=comp(vBase(#1).Grad(#2))(:,i,:,i)', mim, mf_u, mf_p);

% for the vorticity computation
Mo=gf_asm('mass matrix', mim, mf_f);
MVo=gf_asm('volumic','t=comp(Base(#1).vGrad(#2));M(#1,#2)+=t(:,:,1,2)-t(:,:,2,1)', mim, mf_f, mf_u);


UBOUND = gf_mesh_fem_get(mf_u, 'dof on region', 1);% fournit le numero des dof sur la frontiere
UNODES = gf_mesh_fem_get(mf_u, 'basic dof nodes');
Kp(1, :) = 0; % In order to fix the pressure on a node for scheme 1.
Kp(1, 1) = 1;
Ndofu = size(D,2);          % Dof number for the velocity
Ndofp = size(D,1);          % Dof number for the pressure


for t=0:Dt:T
    
  if (scheme == 1)
    
    C=rho*gf_asm('volumic','a=data(#1);M(#1,#1)+=comp(vBase(#1).vGrad(#1).vBase(#1))(i,j,:,k,j,:,k).a(i)', mim,mf_u, U);
    A = M + K + C;
    L = F + M * U;
  
    for i=UBOUND     % Boundary conditions
        A(i, :) = 0; A(i,i) = 1; L(i) = 0;
        if (mod(i, 2) == 1) 
            node = UNODES(:, i);
            if (abs(node(2)-1) < 1e-10 && abs(node(1)-0.5) < 0.499)
               L(i) = v * node(1) * (1-node(1));
            end
        end
    end;
    U1_2 = A \ L;
 
    L2 = -D * U1_2/Dt;
    L2(1) = 0;
    P =  Kp \ L2 ;
    U = M \ (M * U1_2 - B * P);
  
  elseif (scheme == 2)
      
      C=rho*gf_asm('volumic','a=data(#1);M(#1,#1)+=comp(vBase(#1).vGrad(#1).vBase(#1))(i,j,:,k,j,:,k).a(i)', mim,mf_u, U);
      C=C+rho*gf_asm('volumic','a=data(#1);M(#1,#1)+=comp(vBase(#1).vGrad(#1).vBase(#1))(:,i,j,k,k,:,i).a(j)', mim,mf_u, U)/2;
      
      A = [M+K+C, -D'; -D, zeros(Ndofp)];
      L = F + M * U;
      
      for i=UBOUND     % Boundary conditions
        A(i, :) = 0; A(i,i) = 1; L(i) = 0;
        if (mod(i, 2) == 1) 
            node = UNODES(:, i);
            if (abs(node(2)-1) < 1e-10 && abs(node(1)-0.5) < 0.499)
               L(i) = v * node(1) * (1-node(1));
            end
        end
      end;
      
      A(Ndofu+1, :) = 0;   % In order to fix the pressure on a node.
      A(Ndofu+1, Ndofu+1) = 1;
      
      UP = A \ [L; zeros(Ndofp,1)];
      U = UP(1:Ndofu);
      P = UP(Ndofu+1:Ndofu+Ndofp);
      
  end;

  
  Vo = Mo \ (MVo * U); % Vorticity projected on mf_f. 
  
  gf_plot(mf_u, U','mesh','off', 'quiver_density', 15, 'quiver_scale', 4);
  axis([0 1 0 1]);
  hold on;
  gf_plot(mf_p,P','refine',1);
  gf_plot(mf_f,Vo','refine',1,'contour',[-40,-20,-10,10,20,40,80], 'pcolor', 'off');
  hold off;
  colorbar; title(sprintf('Quiver plot of U, with color plot of the pressure and vorticity contour lines, t=%g', t));
  pause(1);
    
end;