1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
% Copyright (C) 2011-2016 Mariama Ndiaye, Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
%
% Transient Navier-Stokes equation on a driven cavity with two numerical
% scheme : a projection and a semi-implicite scheme. Without using the
% bricks.
%
% This program is used to check that matlab-getfem is working. This is
% also a good example of use of GetFEM++.
%
clear all;
gf_workspace('clear all');
NX=20; % Space resoltuion
Dt=0.02; % Time step
T = 10; % Time interval
nu=0.005; % Viscosity
v = 30; % Driven velocity
scheme = 1; % 1 : Projection scheme.
% 2 : Semi-implicit scheme
rho = 2; % density
g = 9.81; % gravity constant
%m=gf_mesh('cartesian', [0:1/NX:1],[0:1/NX:1]);
m = gf_mesh('triangles grid',[0:1/NX:1],[0:1/NX:1]);
border = gf_mesh_get(m,'outer faces');
% mark it as boundary #1
gf_mesh_set(m, 'boundary', 1, border);
gf_plot_mesh(m, 'regions', [1]); % the boundary edges appears in red
% create mesh_fem objects
mf_u = gfMeshFem(m,2); % For the velocity.
mf_p = gfMeshFem(m,1); % For the pressure.
mf_f = gfMeshFem(m,1); % For the external forces.
%mim=gf_mesh_im(m, gf_integ('IM_GAUSS_PARALLELEPIPED(2, 2)'));
mim = gf_mesh_im(m, gf_integ('IM_HCT_COMPOSITE(IM_TRIANGLE(13))'));
% assign the fems to all convexes of the mesh_fems
if (scheme == 1)
gf_mesh_fem_set(mf_u,'fem',gf_fem('FEM_PK(2,1)'));
gf_mesh_fem_set(mf_p,'fem',gf_fem('FEM_PK(2,1)'));
gf_mesh_fem_set(mf_f,'fem',gf_fem('FEM_PK(2,1)'));
elseif (scheme == 2)
gf_mesh_fem_set(mf_u,'fem',gf_fem('FEM_PK(2,2)'));
gf_mesh_fem_set(mf_p,'fem',gf_fem('FEM_PK(2,1)'));
gf_mesh_fem_set(mf_f,'fem',gf_fem('FEM_PK(2,1)'));
end;
% Assembly
Fd = [gf_mesh_fem_get(mf_f, 'eval', { 0}); gf_mesh_fem_get(mf_f, 'eval', { rho*g })];
FD =Fd;
U = zeros(gf_mesh_fem_get(mf_u, 'nbdof'), 1); % initial condition
M=rho*gf_asm('mass matrix',mim,mf_u) / Dt;
K=nu*gf_asm('volumic','M(#1,#1)+=comp(vGrad(#1).vGrad(#1))(:,i,j,:,i,j)', mim, mf_u);
F=gf_asm('volumic source',mim,mf_u,mf_f,Fd); %#1 methode d'elmt fini 1, vBase vecteur de base de methode d'EF 1, vGrad grad vect
Kp=gf_asm('volumic','M(#1,#1)+=comp(Grad(#1).Grad(#1))(:,i,:,i)', mim, mf_p);
D=gf_asm('volumic','M(#1,#2)+=comp(Base(#1).vGrad(#2))(:,:,i,i)', mim, mf_p, mf_u);
B=gf_asm('volumic','M(#1,#2)+=comp(vBase(#1).Grad(#2))(:,i,:,i)', mim, mf_u, mf_p);
% for the vorticity computation
Mo=gf_asm('mass matrix', mim, mf_f);
MVo=gf_asm('volumic','t=comp(Base(#1).vGrad(#2));M(#1,#2)+=t(:,:,1,2)-t(:,:,2,1)', mim, mf_f, mf_u);
UBOUND = gf_mesh_fem_get(mf_u, 'dof on region', 1);% fournit le numero des dof sur la frontiere
UNODES = gf_mesh_fem_get(mf_u, 'basic dof nodes');
Kp(1, :) = 0; % In order to fix the pressure on a node for scheme 1.
Kp(1, 1) = 1;
Ndofu = size(D,2); % Dof number for the velocity
Ndofp = size(D,1); % Dof number for the pressure
for t=0:Dt:T
if (scheme == 1)
C=rho*gf_asm('volumic','a=data(#1);M(#1,#1)+=comp(vBase(#1).vGrad(#1).vBase(#1))(i,j,:,k,j,:,k).a(i)', mim,mf_u, U);
A = M + K + C;
L = F + M * U;
for i=UBOUND % Boundary conditions
A(i, :) = 0; A(i,i) = 1; L(i) = 0;
if (mod(i, 2) == 1)
node = UNODES(:, i);
if (abs(node(2)-1) < 1e-10 && abs(node(1)-0.5) < 0.499)
L(i) = v * node(1) * (1-node(1));
end
end
end;
U1_2 = A \ L;
L2 = -D * U1_2/Dt;
L2(1) = 0;
P = Kp \ L2 ;
U = M \ (M * U1_2 - B * P);
elseif (scheme == 2)
C=rho*gf_asm('volumic','a=data(#1);M(#1,#1)+=comp(vBase(#1).vGrad(#1).vBase(#1))(i,j,:,k,j,:,k).a(i)', mim,mf_u, U);
C=C+rho*gf_asm('volumic','a=data(#1);M(#1,#1)+=comp(vBase(#1).vGrad(#1).vBase(#1))(:,i,j,k,k,:,i).a(j)', mim,mf_u, U)/2;
A = [M+K+C, -D'; -D, zeros(Ndofp)];
L = F + M * U;
for i=UBOUND % Boundary conditions
A(i, :) = 0; A(i,i) = 1; L(i) = 0;
if (mod(i, 2) == 1)
node = UNODES(:, i);
if (abs(node(2)-1) < 1e-10 && abs(node(1)-0.5) < 0.499)
L(i) = v * node(1) * (1-node(1));
end
end
end;
A(Ndofu+1, :) = 0; % In order to fix the pressure on a node.
A(Ndofu+1, Ndofu+1) = 1;
UP = A \ [L; zeros(Ndofp,1)];
U = UP(1:Ndofu);
P = UP(Ndofu+1:Ndofu+Ndofp);
end;
Vo = Mo \ (MVo * U); % Vorticity projected on mf_f.
gf_plot(mf_u, U','mesh','off', 'quiver_density', 15, 'quiver_scale', 4);
axis([0 1 0 1]);
hold on;
gf_plot(mf_p,P','refine',1);
gf_plot(mf_f,Vo','refine',1,'contour',[-40,-20,-10,10,20,40,80], 'pcolor', 'off');
hold off;
colorbar; title(sprintf('Quiver plot of U, with color plot of the pressure and vorticity contour lines, t=%g', t));
pause(1);
end;
|