File: demo_Nitsche_contact_by_hand.m

package info (click to toggle)
getfem%2B%2B 5.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 32,668 kB
  • ctags: 20,930
  • sloc: cpp: 110,660; ansic: 72,312; python: 6,064; sh: 3,608; perl: 1,710; makefile: 1,343
file content (501 lines) | stat: -rw-r--r-- 22,620 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
% Copyright (C) 2015-2016 Rabii Mlika, Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
% under  the  terms  of the  GNU  Lesser General Public License as published
% by  the  Free Software Foundation;  either version 3 of the License,  or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program  is  distributed  in  the  hope  that it will be useful,  but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You  should  have received a copy of the GNU Lesser General Public License
% along  with  this program;  if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.



asize =  size(who('automatic_var654777'));
if (asize(1)) is_automatic = true; else is_automatic = false; end



gf_workspace('clear all');
clear all;
approximation_type = 2  % 0 : Augmentend Lagrangian
                        % 1 : Nitsche (biased)
                        % 2 : Unbiased Nitsche method

draw_mesh = true;       
ref_sol = 0             % 0 : Reference solution (Von Mises)
                        % 1 : Convergence curves in L2 and H1 norms on Omega_1and Omega_2.
                        % 2 : Error as fonction of gamma0 for different values of theta 
                        
% The test case: The numerical tests in two dimensions (resp. three dimensions) are performed on a domain Omega =]-0.5, 0.5[^2 (resp. Omega =]-0.5, 0.5[^3 
% containing the first body: Omega_1 , a disk of radius R and center (0,0) (resp. a sphere of radius 0.25 and center (0,0,0)), and the second: Omega_2 =]-0.5, 0.5[ times ]-0.5, -0.25[
% (resp. Omega_2 =]-0.5, 0.5[2 times ]-0.5, 0.25[). The contact surface Gamma_c1 is the lower semicircle and Gamma_c2 is the top surface of Omega_2 (i.e.Gamma_1 = {x in partial Omega_1 ; x2 <=0} and 
% Gamma_c2 = {x in partial Omega_2 ; x2 = -0.25}. A Dirichlet condition is prescribed on the bottom of the rectangle (resp. cuboid).Since no Dirichlet condition is applied on Omega_1 the problem is only
% semi-coercive,so we apply a penalisation on it and to overcome the non-definiteness coming from the free rigid motions, the horizontal displacement is prescribed to be zero on the two points of coordinates (0,0) and
% (0,0.1) which blocks the horizontal translation and the rigid rotation.The projector PI_1 is defined from Gamma_1 to Gamma_2 in the vertical direction. All remaining parts of the boundaries are
% considered traction free. The Lame coefficients are lambda and mu and we apply a vertical volume density of force on Omega_1.
                        
N = 2                   % 2 or 3 dimensions

R=0.25;                 % Radiaus of Omega_1.
dirichlet_val = 0;      % Dirchelet condition.
f_coeff=0;              % friction coefficient.
clambda = 1;            % Lame coefficient lambda.
cmu = 1;                % Lame coefficient mu.
vertical_force = -0.1;  % Vertical volume density of force on Omega_1.
penalty_parameter = 1E-7;    % penalisation parmeter on Omega_1.
elements_degree = 2          %  degre of elments (1 or 2).
    
 if (ref_sol == 0)
    Theta = [-1];       %   theta
    Gamma0 = [1/100];   %   Nitsche's parmeter gamma0
    Nxy =[50];         %   mesh size (=1/nxy) 2D ->250 and 3D -> 25  
 

 elseif (ref_sol == 1)  
    Theta= [1];
    Gamma0 = [1/100];
     if (N==2)
        Nxy=[10 15 27 37 40 50 60 65 70 75];
     else
        nxy = [5 10 12 15 20 25];
     end
 elseif (ref_sol == 2)
    Theta = [0 1 -1];
    Gamma0 = [400 200 100 50 25 10 1 1/10 1/25 1/50 1/100 1/200 1/400];
    Nxy = [21];
 end

for xx = 1:1:size(Theta,2)
for yy = 1:1:size(Gamma0,2)
for zz = 1:1:size(Nxy,2)
    
theta = Theta(xx);
gamma0 = Gamma0(yy);
NX = Nxy(zz)

%mesh constuction
    if     (N==2) 
        mo1 =  gf_mesher_object('ball',[0 0],R); % Omega_1
        mesh1 = gf_mesh('generate', mo1, 1/NX ,4) ; 
        mo2=gf_mesher_object('rectangle', [-0.5 -0.5], [0.5 -0.25]); %  Omega_2
        mesh2 = gf_mesh('generate', mo2, 1/NX ,2) ; 
    elseif (N==3)
        mo1 =  gf_mesher_object('ball',[0 0 0],R); % Omega_1
        mesh1 = gf_mesh('generate', mo1, 1/NX ,2) ; 
        mo2=gf_mesher_object('rectangle', [-0.5 -0.5 -0.5], [0.5  0.5 -0.25]); %  Omega_2
        mesh2 = gf_mesh('generate', mo2, 1/NX ,2) ; 
    end
    

    mfu1 = gf_mesh_fem(mesh1, N) ;gf_mesh_fem_set(mfu1, 'classical fem', elements_degree);
    mflambda1 = gf_mesh_fem(mesh1, 1); gf_mesh_fem_set(mflambda1, 'classical fem', elements_degree);

    mfvm1 = gf_mesh_fem(mesh1); gf_mesh_fem_set(mfvm1, 'classical discontinuous fem', elements_degree);

    mfu2 = gf_mesh_fem(mesh2, N); gf_mesh_fem_set(mfu2, 'classical fem', elements_degree);

    mfvm2 = gf_mesh_fem(mesh2); gf_mesh_fem_set(mfvm2, 'classical discontinuous fem', elements_degree);

    mim1 = gf_mesh_im(mesh1, 4);
    mim1_contact = gf_mesh_im(mesh1, 6);
    mim2 = gf_mesh_im(mesh2, 4);
    mim2_contact = gf_mesh_im(mesh2, 6);
   
%Contact and dirchelet boundaries.
    CONTACT_BOUNDARY1 = 1;

    fb1 = gf_mesh_get(mesh1, 'outer faces');
    normals1 = gf_mesh_get(mesh1, 'normal of faces', fb1);
    contact_boundary1=fb1(:,find(normals1(N,:) < 0.1)); 
    gf_mesh_set(mesh1,'region', CONTACT_BOUNDARY1,contact_boundary1);
    
    CONTACT_BOUNDARY2 = 2;
    
    border = gf_mesh_get(mesh2,'outer faces');
    normals2 = gf_mesh_get(mesh2, 'normal of faces', border);
       
   P = gf_mesh_get(mesh2, 'pts');
   if (N==2) 
    P=P(:,find(P(1,:)>=-0.25));
    P=P(:,find(P(1,:)<=0.25)) ;
    P=P(:,find(P(2,:)>=-0.25)) ;
   elseif (N==3)
    P=P(:,find(P(1,:)>=-0.25));
    P=P(:,find(P(1,:)<=0.25)) ;
    P=P(:,find(P(2,:)>=-0.25));
    P=P(:,find(P(2,:)<=0.25)) ;
    P=P(:,find(P(3,:)>=-0.25)) ;
   end
   Id=gf_mesh_get(mesh2, 'pid from coords', P);
   contact_boundary2=gf_mesh_get(mesh2,'faces from pid',Id);

   gf_mesh_set(mesh2, 'region', CONTACT_BOUNDARY2,  contact_boundary2);
    
    
    dirichlet_boundary=border(:, find(normals2(N, :) < -0.01));
    DIRICHLET_BOUNDARY2 = 3;
    gf_mesh_set(mesh2, 'region', DIRICHLET_BOUNDARY2, dirichlet_boundary);

   
%Drawing the Mesh
    if (draw_mesh)
        figure(2);
    gf_plot_mesh(mesh2);
    hold on
    gf_plot_mesh(mesh1, 'refine', 8, 'curved', 'on'); % ,  'regions', CONTACT_BOUNDARY1);
    hold off
    end
    
%Elastic model 
    md=gf_model('real');
    gf_model_set(md,'add fem variable', 'u1', mfu1);
    gf_model_set(md,'add fem variable', 'u2', mfu2);

    gf_model_set(md,'add initialized data', 'gamma0', gamma0);
    gf_model_set(md, 'add initialized data', 'theta', theta);
    gf_model_set(md, 'add initialized data', 'friction_coeff', [f_coeff]);
     gf_model_set(md, 'add initialized data', 'R', R);

    gf_model_set(md, 'add initialized data', 'cmu', [cmu]);
    gf_model_set(md, 'add initialized data', 'clambda', [clambda]);
    gf_model_set(md, 'add isotropic linearized elasticity brick', mim1, 'u1','clambda', 'cmu');
    gf_model_set(md, 'add isotropic linearized elasticity brick', mim2, 'u2','clambda', 'cmu');
    gf_model_set(md, 'add initialized data', 'penalty_param1', [penalty_parameter]);
    indmass = gf_model_set(md, 'add mass brick', mim1, 'u1', 'penalty_param1');
% Boundary conditions: 
    if N==2
       gf_model_set(md, 'add initialized data', 'Fdata', [0 vertical_force]);
       Ddata = zeros(1, 2);
       cpoints = [0,0    0,0.1]; % constrained points for 2d
       cunitv  = [1,0   1,0];   % corresponding constrained directions for 2d.
    elseif N==3
       gf_model_set(md, 'add initialized data', 'Fdata', [0 0 vertical_force]);
       Ddata = zeros(1, 3);
       cpoints = [0, 0, 0,    0, 0, 0,   0, 0, 0.1]; % constrained points for 3d
       cunitv  = [1, 0, 0,   0, 1, 0,   0, 1, 0];   % corresponding constrained directions for 3d.
    end
    gf_model_set(md, 'add source term brick', mim1, 'u1', 'Fdata');
    gf_model_set(md, 'add initialized data', 'Ddata2', Ddata);
    gf_model_set(md, 'add Dirichlet condition with multipliers', mim2, 'u2', 1, DIRICHLET_BOUNDARY2, 'Ddata2');  
    gf_model_set(md, 'add initialized data', 'cpoints', cpoints);
    gf_model_set(md, 'add initialized data', 'cunitv', cunitv);
    gf_model_set(md, 'add pointwise constraints with multipliers', 'u1', 'cpoints', 'cunitv');

%Contact method:
    if N==2 
         gf_model_set(md, 'add initialized data', 'N1', [0;-1]);
         gf_model_set(md, 'add_interpolate_transformation_from_expression', 'Proj1', mesh1, mesh2, '[X(1);-0.25]');
    elseif N==3
        gf_model_set(md, 'add initialized data', 'N1', [0;0;-1]);
        gf_model_set(md, 'add_interpolate_transformation_from_expression', 'Proj1', mesh1, mesh2, '[X(1);X(2);-0.25]');
    end
  
    if (approximation_type == 0)
      gf_model_set(md, 'add filtered fem variable', 'lambda1', mflambda1, CONTACT_BOUNDARY1);
      gf_model_set(md, 'add nonlinear generic assembly brick', mim1_contact, '-lambda1*(Test_u1.N1)+lambda1*(Interpolate(Test_u2,Proj1).N1)', CONTACT_BOUNDARY1);
      gf_model_set(md, 'add nonlinear generic assembly brick', mim1_contact, '-(gamma0*element_size)*(lambda1 + neg_part(lambda1-(1/(gamma0*element_size))*((u1-Interpolate(u2,Proj1)+X-Interpolate(X,Proj1)).N1)))*Test_lambda1', CONTACT_BOUNDARY1);

    else
      gamma='(gamma0*element_size)';
      sigma_vh1_n ='(((clambda*Trace(Grad_Test_u1)*Id(qdim(u1)) + cmu*(Grad_Test_u1 + Grad_Test_u1''))*Normal).N1)';
      sigma_uh1_n ='(((clambda*Trace(Grad_u1)*Id(qdim(u1)) + cmu*(Grad_u1 + Grad_u1''))*Normal).N1)';
      Pn_gamma_u1=strcat('((u1-Interpolate(u2,Proj1)+X-Interpolate(X,Proj1)).N1) - ',gamma,'*(',sigma_uh1_n,')');
 
      if (approximation_type == 1) coeff = ''; elseif (approximation_type == 2) coeff = '0.5*'; end
      gf_model_set(md, 'add nonlinear generic assembly brick', mim1_contact, strcat('-',coeff,'theta*',gamma,'*(',sigma_uh1_n,')*(',sigma_vh1_n,')'), CONTACT_BOUNDARY1);
      gf_model_set(md, 'add nonlinear generic assembly brick', mim1_contact, strcat('-',coeff,'theta*',sigma_vh1_n,'*pos_part(',Pn_gamma_u1,')'), CONTACT_BOUNDARY1);
      gf_model_set(md, 'add nonlinear generic assembly brick', mim1_contact, strcat(coeff,'(1/',gamma,')*(Test_u1.N1)*pos_part(',Pn_gamma_u1,')'), CONTACT_BOUNDARY1);
      gf_model_set(md, 'add nonlinear generic assembly brick', mim1_contact, strcat('-',coeff,'(1/',gamma,')*(Interpolate(Test_u2,Proj1).N1)*pos_part(',Pn_gamma_u1,')'),CONTACT_BOUNDARY1);
     
      if (approximation_type == 2)
         if N==2 
         gf_model_set(md, 'add initialized data', 'N2', [0;1]);
         gf_model_set(md,'add_interpolate_transformation_from_expression', 'Proj2', mesh2,mesh1, '[ X(1) ; 0.0001-sqrt(sqr(R)-sqr(X(1)))]');
        elseif N==3
        gf_model_set(md, 'add initialized data', 'N2', [0;0;1]);
         gf_model_set(md,'add_interpolate_transformation_from_expression', 'Proj2', mesh2,mesh1, '[ X(1) ; X(2) ; 0.01-sqrt(sqr(R)-(sqr(X(1))+sqr(X(2))) )]');
         end
        sigma_vh2_n ='(((clambda*Trace(Grad_Test_u2)*Id(qdim(u2)) + cmu*(Grad_Test_u2 + Grad_Test_u2'')).Normal).N2)';
        sigma_uh2_n ='(((clambda*Trace(Grad_u2)*Id(qdim(u2)) + cmu*(Grad_u2 + Grad_u2'')).Normal).N2)';
        Pn_gamma_u2=strcat('((u2-Interpolate(u1,Proj2)).N2) - ',gamma,'*(',sigma_uh2_n,')-(Interpolate(X,Proj2)-X).N2');
        
        gf_model_set(md, 'add nonlinear generic assembly brick', mim2_contact, strcat('-0.5*theta*',gamma,'*(',sigma_uh2_n,')*(',sigma_vh2_n,')'), CONTACT_BOUNDARY2);
        gf_model_set(md, 'add nonlinear generic assembly brick', mim2_contact, strcat('-0.5*theta*',sigma_vh2_n,'*pos_part(',Pn_gamma_u2,')'), CONTACT_BOUNDARY2);
        gf_model_set(md, 'add nonlinear generic assembly brick', mim2_contact, strcat('0.5*(1/',gamma,')*(Test_u2.N2)*pos_part(',Pn_gamma_u2,')'), CONTACT_BOUNDARY2);
        gf_model_set(md, 'add nonlinear generic assembly brick', mim2_contact, strcat('-0.5*(1/',gamma,')*(Interpolate(Test_u1,Proj2).N2)*pos_part(',Pn_gamma_u2,')'), CONTACT_BOUNDARY2);
      end
    end


%resolution:
    solve=true;
    niter= 100;
    max_res = 1E-8;
    max_iter = 100;

    gf_model_get(md, 'solve', 'max_res', 1E-9, 'max_iter', niter, 'noisy', 'lsearch', 'simplest',  'alpha min', 0.8, 'lsolver', 'mumps');

    U1 = gf_model_get(md, 'variable', 'u1');
    UU1 = gf_model_get(md, 'variable', 'u1');
    VM1 = gf_model_get(md, 'compute_isotropic_linearized_Von_Mises_or_Tresca', ...
                              'u1', 'clambda', 'cmu', mfvm1);
    U2 = gf_model_get(md, 'variable', 'u2');  
    UU2 = gf_model_get(md, 'variable', 'u2');
    VM2 = gf_model_get(md, 'compute_isotropic_linearized_Von_Mises_or_Tresca', ...
                              'u2', 'clambda', 'cmu', mfvm2);
%Van Mises stress contour plot (for ref_sol=0):                          
    if ref_sol==0                      
         if N==2
            gf_plot(mfvm1,VM1,'mesh', 'off', 'deformed_mesh','off', 'deformation',U1,'deformation_mf',mfu1,'deformation_scale', 1, 'refine', 8); colorbar;
            hold on
            gf_plot(mfvm2,VM2,'mesh', 'off', 'deformed_mesh','off', 'deformation',U2,'deformation_mf',mfu2,'deformation_scale', 1, 'refine', 8); colorbar;
         elseif N==3
            sl1=gf_slice({'boundary',{'intersection',{'ball',-1,[0;0;0],R},{'planar',1,[0;0;0],[1;0;0]}}}, mesh1, 5);
            sl2=gf_slice({'boundary',{'intersection',{'planar',-1,[0;0;-0.25],[0;0;1]},{'planar',1,[0;0;0],[1;0;0]}}}, mesh2, 5); 
            P1=gf_slice_get(sl1,'pts');P2=gf_slice_get(sl2,'pts');
            dP1=gf_compute(mfu1,U1,'interpolate on',sl1);
            dP2=gf_compute(mfu2,U2,'interpolate on',sl2);
            gf_slice_set(sl1, 'pts', P1+dP1);
            gf_slice_set(sl2, 'pts', P2+dP2);           
            VMsl1=gf_compute(mfvm1,VM1,'interpolate on',sl1);
            VMsl2=gf_compute(mfvm2,VM2,'interpolate on',sl2);
            set(gcf,'renderer','zbuffer');
            h=gf_plot_slice(sl1,'mesh','off','mesh_faces','on','mesh_slice_edges','on','data',VMsl1);
            hold on;
            h=gf_plot_slice(sl2,'mesh','off','mesh_slice_edges','off','data',VMsl2);
            hold off;
            view(-55,10); axis on; camlight('headlight'); %gf_colormap('tank');
            xlabel('x'); ylabel('y'); zlabel('z');
            %title('3D');      
         end

%Saving the reference solution:
        gf_mesh_get(mesh1, 'save', 'sol_ref_mesh1');
        gf_mesh_get(mesh2, 'save', 'sol_ref_mesh2');

        gf_mesh_fem_get(mfu1, 'save', 'sol_ref_mesh_fem1');
        gf_mesh_fem_get(mfu2, 'save', 'sol_ref_mesh_fem2');
        %gf_mesh_im_get(mim1,'save','sol_ref_mim1');
        %gf_mesh_im_get(mim2,'save','sol_ref_mim2');
        save sol_de_reference1 UU1;
        save sol_de_reference2 UU2;
       
    else
% Reconstruction of reference mesh: mesh_ref1, mesh_ref2, mfu_ref1, mfu_ref2, min_ref1, min_ref2
        
        mesh_ref1 = gf_mesh('load', 'sol_ref_mesh1');
        mesh_ref2 = gf_mesh('load', 'sol_ref_mesh2');
       mfu_ref1 = gf_mesh_fem('load', 'sol_ref_mesh_fem1',mesh_ref1);
       mfu_ref2 = gf_mesh_fem('load', 'sol_ref_mesh_fem2',mesh_ref2);

        N =gf_mesh_get(mesh_ref2,'dim');
        %mfu_ref1 = gf_mesh_fem(mesh_ref1, N); gf_mesh_fem_set(mfu_ref1, 'classical fem', elements_degree);
        %mfu_ref2 = gf_mesh_fem(mesh_ref2, N);gf_mesh_fem_set(mfu_ref2, 'classical fem', elements_degree);
        mim_ref1 = gf_mesh_im(mesh_ref1, 4);
        mim_ref2 = gf_mesh_im(mesh_ref2, 4);


        U1ref = load('sol_de_reference1');
        U2ref = load('sol_de_reference2');

 %U1ee = gf_compute(mfu_ref1, U1ref.UU1, 'interpolate on', mfu_ref1);

        U1e = gf_compute(mfu1, U1, 'interpolate on', mfu_ref1);
        U2e = gf_compute(mfu2, U2, 'interpolate on', mfu_ref2);
        
%Calculation of the displacement relatif error (in percentage) for H1 and L2 norms:
        n_tot1 = gf_compute(mfu_ref1, U1e-U1ref.UU1, 'L2 norm', mim_ref1);
        n_tot2 = gf_compute(mfu_ref2, U2e-U2ref.UU2, 'L2 norm', mim_ref2);
        n_ref1 = gf_compute(mfu_ref1, U1ref.UU1, 'L2 norm',  mim_ref1);
        n_ref2 = gf_compute(mfu_ref2, U2ref.UU2, 'L2 norm',  mim_ref2);
        m_tot1 = gf_compute(mfu_ref1, U1e-U1ref.UU1, 'H1 norm', mim_ref1);
        m_tot2 = gf_compute(mfu_ref2, U2e-U2ref.UU2, 'H1 norm', mim_ref2);
        m_ref1 = gf_compute(mfu_ref1, U1ref.UU1, 'H1 norm',  mim_ref1);
        m_ref2 = gf_compute(mfu_ref2, U2ref.UU2, 'H1 norm',  mim_ref2);
        n1 = 100*n_tot1/n_ref1; 
        n2 = 100*n_tot2/n_ref2;
        m1 = 100*m_tot1/m_ref1;
        m2 = 100*m_tot2/m_ref2;
        Y11(yy,zz,xx)=n1;
        Y12(yy,zz,xx)=n2;
        Y21(yy,zz,xx)=m1;
        Y22(yy,zz,xx)=m2;
    end
end
end
end

if (ref_sol == 1 ) % Curves of error depending on h
    Y11(1,:,1)
    Y12(1,:,1)
    Y21(1,:,1)
    Y22(1,:,1)
    X=1./Nxy 

   
    figure(2);
    msize= size(X,2);
    loglog(X,Y11(1,:,1),'o-k', 'linewidth', 2, 'MarkerSize', 15 )
    hold on;
    loglog(X,Y12(1,:,1),'+--k', 'linewidth', 2, 'MarkerSize', 15);
    hold off;
    P1 = polyfit(log(X),log(Y11(1,:,1)),1);
    P2 = polyfit(log(X),log(Y12(1,:,1)),1);
    legend(strcat('norm on Omega 1  (slope=',num2str(P1(1)), ')'), ...
           strcat('norm on Omega 2 (slope=',num2str(P2(1)), ')'), ...
           'Location', 'NorthWest');
    grid on;
    axesobj = findobj('type', 'axes');
    set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
    set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
    set(axesobj, 'linewidth', 4);
    xlabel('h');
    ylabel('L^2 relative error (in %)');
    set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'}) 
    

    figure(3);
 
    loglog(X,Y21(1,:,1),'o-k', 'linewidth', 2, 'MarkerSize', 15 )
    hold on;
    loglog(X,Y22(1,:,1),'+--k', 'linewidth', 2, 'MarkerSize', 15);
    hold off;
    P3 = polyfit(log(X),log(Y21(1,:,1)),1);
    P4 = polyfit(log(X),log(Y22(1,:,1)),1);
    legend(strcat('norm on Omega 1  (slope=',num2str(P3(1)), ')'), ...
           strcat('norm on Omega 2 (slope=',num2str(P4(1)), ')'), ...
           'Location', 'NorthWest');
    grid on;
    axesobj = findobj('type', 'axes');
    set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
    set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
    set(axesobj, 'linewidth', 4);
    xlabel('h');
    ylabel('H^1 relative error (in %)');
    set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'}) 
       
end

if (ref_sol == 2 )  % Curve of error depending on gamma0
    
    % Theta = [0 1 -1];
    
    Y11(:,1,:)
    Y12(:,1,:)
    Y21(:,1,:)
    Y22(:,1,:)
    X = gamma 

    
    figure(2);
    

    loglog(X,Y11(:,1,1)','o-k', 'linewidth', 2, 'MarkerSize', 15 )
    hold on;
    loglog(X,Y11(:,1,2)','+-k', 'linewidth', 2, 'MarkerSize', 15 );
    loglog(X,Y11(:,1,3)','x-k', 'linewidth', 2, 'MarkerSize', 15 );
    hold off;
        
    P1 = polyfit(log(X),log(Y11(:,1,1)'),1);
    P2 = polyfit(log(X),log(Y11(:,1,2)'),1);
    P3 = polyfit(log(X),log(Y11(:,1,3)'),1);
    legend(strcat('norm for theta = 0 '), ...
           strcat('norm for theta = 1 '), ...
           strcat('norm for theta = -1'), ...
           'Location', 'NorthWest');
    grid on;
    axesobj = findobj('type', 'axes');
    set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
    set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
    set(axesobj, 'linewidth', 4);
    xlabel('gamma0');
    ylabel('L^2(Omega 1) relative error (in %)');
    % set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'})  
    
    
    figure(3);
    

    loglog(X,Y12(:,1,1)','o-k', 'linewidth', 2, 'MarkerSize', 15 )
    hold on;
    loglog(X,Y12(:,1,2)','+-k', 'linewidth', 2, 'MarkerSize', 15 );
    loglog(X,Y12(:,1,3)','x-k', 'linewidth', 2, 'MarkerSize', 15 );
    hold off;
        
    P1 = polyfit(log(X),log(Y12(:,1,1)'),1); % the first and second are too bad;
    P2 = polyfit(log(X),log(Y12(:,1,2)'),1);
    P3 = polyfit(log(X),log(Y12(:,1,3)'),1);
    legend(strcat('norm for theta = 0 '), ...
           strcat('norm for theta = 1 '), ...
           strcat('norm for theta = -1'), ...
           'Location', 'NorthWest');
    grid on;
    axesobj = findobj('type', 'axes');
    set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
    set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
    set(axesobj, 'linewidth', 4);
    xlabel('gamma0');
    ylabel('L^2(Omega 2) relative error (in %)');
    % set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'}) 
   
    
    
     figure(4);
    

    loglog(X,Y21(:,1,1)','o-k', 'linewidth', 2, 'MarkerSize', 15 )
    hold on;
    loglog(X,Y21(:,1,2)','+-k', 'linewidth', 2, 'MarkerSize', 15 );
    loglog(X,Y21(:,1,3)','x-k', 'linewidth', 2, 'MarkerSize', 15 );
    hold off;
        
    P1 = polyfit(log(X),log(Y21(:,1,1)'),1); % the first and second are too bad;
    P2 = polyfit(log(X),log(Y21(:,1,2)'),1);
    P3 = polyfit(log(X),log(Y21(:,1,3)'),1);
    legend(strcat('norm for theta = 0 '), ...
           strcat('norm for theta = 1 '), ...
           strcat('norm for theta = -1'), ...
           'Location', 'NorthWest');
    grid on;
    axesobj = findobj('type', 'axes');
    set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
    set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
    set(axesobj, 'linewidth', 4);
    xlabel('gamma0');
    ylabel('H^1(Omega 1) relative error (in %)');
    % set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'}) 

    
    figure(5);
    

    loglog(X,Y22(:,1,1),'o-k', 'linewidth', 2, 'MarkerSize', 15 )
    hold on;
    loglog(X,Y22(:,1,2),'+-k', 'linewidth', 2, 'MarkerSize', 15 );
    loglog(X,Y22(:,1,3),'x-k', 'linewidth', 2, 'MarkerSize', 15 );
    hold off;
        
    P1 = polyfit(log(X),log(Y22(:,1,1)'),1); % the first and second are too bad;
    P2 = polyfit(log(X),log(Y22(:,1,2)'),1);
    P3 = polyfit(log(X),log(Y22(:,1,3)'),1);
    legend(strcat('norm for theta = 0 '), ...
           strcat('norm for theta = 1 '), ...
           strcat('norm for theta = -1'), ...
           'Location', 'NorthWest');
    grid on;
    axesobj = findobj('type', 'axes');
    set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
    set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
    set(axesobj, 'linewidth', 4);
    xlabel('gamma0');
    ylabel('H^1(Omega 2) relative error (in %)');
   
end