1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
% Copyright (C) 2015-2016 Rabii Mlika, Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
asize = size(who('automatic_var654777'));
if (asize(1)) is_automatic = true; else is_automatic = false; end
gf_workspace('clear all');
clear all;
approximation_type = 2 % 0 : Augmentend Lagrangian
% 1 : Nitsche (biased)
% 2 : Unbiased Nitsche method
draw_mesh = true;
ref_sol = 0 % 0 : Reference solution (Von Mises)
% 1 : Convergence curves in L2 and H1 norms on Omega_1and Omega_2.
% 2 : Error as fonction of gamma0 for different values of theta
% The test case: The numerical tests in two dimensions (resp. three dimensions) are performed on a domain Omega =]-0.5, 0.5[^2 (resp. Omega =]-0.5, 0.5[^3
% containing the first body: Omega_1 , a disk of radius R and center (0,0) (resp. a sphere of radius 0.25 and center (0,0,0)), and the second: Omega_2 =]-0.5, 0.5[ times ]-0.5, -0.25[
% (resp. Omega_2 =]-0.5, 0.5[2 times ]-0.5, 0.25[). The contact surface Gamma_c1 is the lower semicircle and Gamma_c2 is the top surface of Omega_2 (i.e.Gamma_1 = {x in partial Omega_1 ; x2 <=0} and
% Gamma_c2 = {x in partial Omega_2 ; x2 = -0.25}. A Dirichlet condition is prescribed on the bottom of the rectangle (resp. cuboid).Since no Dirichlet condition is applied on Omega_1 the problem is only
% semi-coercive,so we apply a penalisation on it and to overcome the non-definiteness coming from the free rigid motions, the horizontal displacement is prescribed to be zero on the two points of coordinates (0,0) and
% (0,0.1) which blocks the horizontal translation and the rigid rotation.The projector PI_1 is defined from Gamma_1 to Gamma_2 in the vertical direction. All remaining parts of the boundaries are
% considered traction free. The Lame coefficients are lambda and mu and we apply a vertical volume density of force on Omega_1.
N = 2 % 2 or 3 dimensions
R=0.25; % Radiaus of Omega_1.
dirichlet_val = 0; % Dirchelet condition.
f_coeff=0; % friction coefficient.
clambda = 1; % Lame coefficient lambda.
cmu = 1; % Lame coefficient mu.
vertical_force = -0.1; % Vertical volume density of force on Omega_1.
penalty_parameter = 1E-7; % penalisation parmeter on Omega_1.
elements_degree = 2 % degre of elments (1 or 2).
if (ref_sol == 0)
Theta = [-1]; % theta
Gamma0 = [1/100]; % Nitsche's parmeter gamma0
Nxy =[50]; % mesh size (=1/nxy) 2D ->250 and 3D -> 25
elseif (ref_sol == 1)
Theta= [1];
Gamma0 = [1/100];
if (N==2)
Nxy=[10 15 27 37 40 50 60 65 70 75];
else
nxy = [5 10 12 15 20 25];
end
elseif (ref_sol == 2)
Theta = [0 1 -1];
Gamma0 = [400 200 100 50 25 10 1 1/10 1/25 1/50 1/100 1/200 1/400];
Nxy = [21];
end
for xx = 1:1:size(Theta,2)
for yy = 1:1:size(Gamma0,2)
for zz = 1:1:size(Nxy,2)
theta = Theta(xx);
gamma0 = Gamma0(yy);
NX = Nxy(zz)
%mesh constuction
if (N==2)
mo1 = gf_mesher_object('ball',[0 0],R); % Omega_1
mesh1 = gf_mesh('generate', mo1, 1/NX ,4) ;
mo2=gf_mesher_object('rectangle', [-0.5 -0.5], [0.5 -0.25]); % Omega_2
mesh2 = gf_mesh('generate', mo2, 1/NX ,2) ;
elseif (N==3)
mo1 = gf_mesher_object('ball',[0 0 0],R); % Omega_1
mesh1 = gf_mesh('generate', mo1, 1/NX ,2) ;
mo2=gf_mesher_object('rectangle', [-0.5 -0.5 -0.5], [0.5 0.5 -0.25]); % Omega_2
mesh2 = gf_mesh('generate', mo2, 1/NX ,2) ;
end
mfu1 = gf_mesh_fem(mesh1, N) ;gf_mesh_fem_set(mfu1, 'classical fem', elements_degree);
mflambda1 = gf_mesh_fem(mesh1, 1); gf_mesh_fem_set(mflambda1, 'classical fem', elements_degree);
mfvm1 = gf_mesh_fem(mesh1); gf_mesh_fem_set(mfvm1, 'classical discontinuous fem', elements_degree);
mfu2 = gf_mesh_fem(mesh2, N); gf_mesh_fem_set(mfu2, 'classical fem', elements_degree);
mfvm2 = gf_mesh_fem(mesh2); gf_mesh_fem_set(mfvm2, 'classical discontinuous fem', elements_degree);
mim1 = gf_mesh_im(mesh1, 4);
mim1_contact = gf_mesh_im(mesh1, 6);
mim2 = gf_mesh_im(mesh2, 4);
mim2_contact = gf_mesh_im(mesh2, 6);
%Contact and dirchelet boundaries.
CONTACT_BOUNDARY1 = 1;
fb1 = gf_mesh_get(mesh1, 'outer faces');
normals1 = gf_mesh_get(mesh1, 'normal of faces', fb1);
contact_boundary1=fb1(:,find(normals1(N,:) < 0.1));
gf_mesh_set(mesh1,'region', CONTACT_BOUNDARY1,contact_boundary1);
CONTACT_BOUNDARY2 = 2;
border = gf_mesh_get(mesh2,'outer faces');
normals2 = gf_mesh_get(mesh2, 'normal of faces', border);
P = gf_mesh_get(mesh2, 'pts');
if (N==2)
P=P(:,find(P(1,:)>=-0.25));
P=P(:,find(P(1,:)<=0.25)) ;
P=P(:,find(P(2,:)>=-0.25)) ;
elseif (N==3)
P=P(:,find(P(1,:)>=-0.25));
P=P(:,find(P(1,:)<=0.25)) ;
P=P(:,find(P(2,:)>=-0.25));
P=P(:,find(P(2,:)<=0.25)) ;
P=P(:,find(P(3,:)>=-0.25)) ;
end
Id=gf_mesh_get(mesh2, 'pid from coords', P);
contact_boundary2=gf_mesh_get(mesh2,'faces from pid',Id);
gf_mesh_set(mesh2, 'region', CONTACT_BOUNDARY2, contact_boundary2);
dirichlet_boundary=border(:, find(normals2(N, :) < -0.01));
DIRICHLET_BOUNDARY2 = 3;
gf_mesh_set(mesh2, 'region', DIRICHLET_BOUNDARY2, dirichlet_boundary);
%Drawing the Mesh
if (draw_mesh)
figure(2);
gf_plot_mesh(mesh2);
hold on
gf_plot_mesh(mesh1, 'refine', 8, 'curved', 'on'); % , 'regions', CONTACT_BOUNDARY1);
hold off
end
%Elastic model
md=gf_model('real');
gf_model_set(md,'add fem variable', 'u1', mfu1);
gf_model_set(md,'add fem variable', 'u2', mfu2);
gf_model_set(md,'add initialized data', 'gamma0', gamma0);
gf_model_set(md, 'add initialized data', 'theta', theta);
gf_model_set(md, 'add initialized data', 'friction_coeff', [f_coeff]);
gf_model_set(md, 'add initialized data', 'R', R);
gf_model_set(md, 'add initialized data', 'cmu', [cmu]);
gf_model_set(md, 'add initialized data', 'clambda', [clambda]);
gf_model_set(md, 'add isotropic linearized elasticity brick', mim1, 'u1','clambda', 'cmu');
gf_model_set(md, 'add isotropic linearized elasticity brick', mim2, 'u2','clambda', 'cmu');
gf_model_set(md, 'add initialized data', 'penalty_param1', [penalty_parameter]);
indmass = gf_model_set(md, 'add mass brick', mim1, 'u1', 'penalty_param1');
% Boundary conditions:
if N==2
gf_model_set(md, 'add initialized data', 'Fdata', [0 vertical_force]);
Ddata = zeros(1, 2);
cpoints = [0,0 0,0.1]; % constrained points for 2d
cunitv = [1,0 1,0]; % corresponding constrained directions for 2d.
elseif N==3
gf_model_set(md, 'add initialized data', 'Fdata', [0 0 vertical_force]);
Ddata = zeros(1, 3);
cpoints = [0, 0, 0, 0, 0, 0, 0, 0, 0.1]; % constrained points for 3d
cunitv = [1, 0, 0, 0, 1, 0, 0, 1, 0]; % corresponding constrained directions for 3d.
end
gf_model_set(md, 'add source term brick', mim1, 'u1', 'Fdata');
gf_model_set(md, 'add initialized data', 'Ddata2', Ddata);
gf_model_set(md, 'add Dirichlet condition with multipliers', mim2, 'u2', 1, DIRICHLET_BOUNDARY2, 'Ddata2');
gf_model_set(md, 'add initialized data', 'cpoints', cpoints);
gf_model_set(md, 'add initialized data', 'cunitv', cunitv);
gf_model_set(md, 'add pointwise constraints with multipliers', 'u1', 'cpoints', 'cunitv');
%Contact method:
if N==2
gf_model_set(md, 'add initialized data', 'N1', [0;-1]);
gf_model_set(md, 'add_interpolate_transformation_from_expression', 'Proj1', mesh1, mesh2, '[X(1);-0.25]');
elseif N==3
gf_model_set(md, 'add initialized data', 'N1', [0;0;-1]);
gf_model_set(md, 'add_interpolate_transformation_from_expression', 'Proj1', mesh1, mesh2, '[X(1);X(2);-0.25]');
end
if (approximation_type == 0)
gf_model_set(md, 'add filtered fem variable', 'lambda1', mflambda1, CONTACT_BOUNDARY1);
gf_model_set(md, 'add nonlinear generic assembly brick', mim1_contact, '-lambda1*(Test_u1.N1)+lambda1*(Interpolate(Test_u2,Proj1).N1)', CONTACT_BOUNDARY1);
gf_model_set(md, 'add nonlinear generic assembly brick', mim1_contact, '-(gamma0*element_size)*(lambda1 + neg_part(lambda1-(1/(gamma0*element_size))*((u1-Interpolate(u2,Proj1)+X-Interpolate(X,Proj1)).N1)))*Test_lambda1', CONTACT_BOUNDARY1);
else
gamma='(gamma0*element_size)';
sigma_vh1_n ='(((clambda*Trace(Grad_Test_u1)*Id(qdim(u1)) + cmu*(Grad_Test_u1 + Grad_Test_u1''))*Normal).N1)';
sigma_uh1_n ='(((clambda*Trace(Grad_u1)*Id(qdim(u1)) + cmu*(Grad_u1 + Grad_u1''))*Normal).N1)';
Pn_gamma_u1=strcat('((u1-Interpolate(u2,Proj1)+X-Interpolate(X,Proj1)).N1) - ',gamma,'*(',sigma_uh1_n,')');
if (approximation_type == 1) coeff = ''; elseif (approximation_type == 2) coeff = '0.5*'; end
gf_model_set(md, 'add nonlinear generic assembly brick', mim1_contact, strcat('-',coeff,'theta*',gamma,'*(',sigma_uh1_n,')*(',sigma_vh1_n,')'), CONTACT_BOUNDARY1);
gf_model_set(md, 'add nonlinear generic assembly brick', mim1_contact, strcat('-',coeff,'theta*',sigma_vh1_n,'*pos_part(',Pn_gamma_u1,')'), CONTACT_BOUNDARY1);
gf_model_set(md, 'add nonlinear generic assembly brick', mim1_contact, strcat(coeff,'(1/',gamma,')*(Test_u1.N1)*pos_part(',Pn_gamma_u1,')'), CONTACT_BOUNDARY1);
gf_model_set(md, 'add nonlinear generic assembly brick', mim1_contact, strcat('-',coeff,'(1/',gamma,')*(Interpolate(Test_u2,Proj1).N1)*pos_part(',Pn_gamma_u1,')'),CONTACT_BOUNDARY1);
if (approximation_type == 2)
if N==2
gf_model_set(md, 'add initialized data', 'N2', [0;1]);
gf_model_set(md,'add_interpolate_transformation_from_expression', 'Proj2', mesh2,mesh1, '[ X(1) ; 0.0001-sqrt(sqr(R)-sqr(X(1)))]');
elseif N==3
gf_model_set(md, 'add initialized data', 'N2', [0;0;1]);
gf_model_set(md,'add_interpolate_transformation_from_expression', 'Proj2', mesh2,mesh1, '[ X(1) ; X(2) ; 0.01-sqrt(sqr(R)-(sqr(X(1))+sqr(X(2))) )]');
end
sigma_vh2_n ='(((clambda*Trace(Grad_Test_u2)*Id(qdim(u2)) + cmu*(Grad_Test_u2 + Grad_Test_u2'')).Normal).N2)';
sigma_uh2_n ='(((clambda*Trace(Grad_u2)*Id(qdim(u2)) + cmu*(Grad_u2 + Grad_u2'')).Normal).N2)';
Pn_gamma_u2=strcat('((u2-Interpolate(u1,Proj2)).N2) - ',gamma,'*(',sigma_uh2_n,')-(Interpolate(X,Proj2)-X).N2');
gf_model_set(md, 'add nonlinear generic assembly brick', mim2_contact, strcat('-0.5*theta*',gamma,'*(',sigma_uh2_n,')*(',sigma_vh2_n,')'), CONTACT_BOUNDARY2);
gf_model_set(md, 'add nonlinear generic assembly brick', mim2_contact, strcat('-0.5*theta*',sigma_vh2_n,'*pos_part(',Pn_gamma_u2,')'), CONTACT_BOUNDARY2);
gf_model_set(md, 'add nonlinear generic assembly brick', mim2_contact, strcat('0.5*(1/',gamma,')*(Test_u2.N2)*pos_part(',Pn_gamma_u2,')'), CONTACT_BOUNDARY2);
gf_model_set(md, 'add nonlinear generic assembly brick', mim2_contact, strcat('-0.5*(1/',gamma,')*(Interpolate(Test_u1,Proj2).N2)*pos_part(',Pn_gamma_u2,')'), CONTACT_BOUNDARY2);
end
end
%resolution:
solve=true;
niter= 100;
max_res = 1E-8;
max_iter = 100;
gf_model_get(md, 'solve', 'max_res', 1E-9, 'max_iter', niter, 'noisy', 'lsearch', 'simplest', 'alpha min', 0.8, 'lsolver', 'mumps');
U1 = gf_model_get(md, 'variable', 'u1');
UU1 = gf_model_get(md, 'variable', 'u1');
VM1 = gf_model_get(md, 'compute_isotropic_linearized_Von_Mises_or_Tresca', ...
'u1', 'clambda', 'cmu', mfvm1);
U2 = gf_model_get(md, 'variable', 'u2');
UU2 = gf_model_get(md, 'variable', 'u2');
VM2 = gf_model_get(md, 'compute_isotropic_linearized_Von_Mises_or_Tresca', ...
'u2', 'clambda', 'cmu', mfvm2);
%Van Mises stress contour plot (for ref_sol=0):
if ref_sol==0
if N==2
gf_plot(mfvm1,VM1,'mesh', 'off', 'deformed_mesh','off', 'deformation',U1,'deformation_mf',mfu1,'deformation_scale', 1, 'refine', 8); colorbar;
hold on
gf_plot(mfvm2,VM2,'mesh', 'off', 'deformed_mesh','off', 'deformation',U2,'deformation_mf',mfu2,'deformation_scale', 1, 'refine', 8); colorbar;
elseif N==3
sl1=gf_slice({'boundary',{'intersection',{'ball',-1,[0;0;0],R},{'planar',1,[0;0;0],[1;0;0]}}}, mesh1, 5);
sl2=gf_slice({'boundary',{'intersection',{'planar',-1,[0;0;-0.25],[0;0;1]},{'planar',1,[0;0;0],[1;0;0]}}}, mesh2, 5);
P1=gf_slice_get(sl1,'pts');P2=gf_slice_get(sl2,'pts');
dP1=gf_compute(mfu1,U1,'interpolate on',sl1);
dP2=gf_compute(mfu2,U2,'interpolate on',sl2);
gf_slice_set(sl1, 'pts', P1+dP1);
gf_slice_set(sl2, 'pts', P2+dP2);
VMsl1=gf_compute(mfvm1,VM1,'interpolate on',sl1);
VMsl2=gf_compute(mfvm2,VM2,'interpolate on',sl2);
set(gcf,'renderer','zbuffer');
h=gf_plot_slice(sl1,'mesh','off','mesh_faces','on','mesh_slice_edges','on','data',VMsl1);
hold on;
h=gf_plot_slice(sl2,'mesh','off','mesh_slice_edges','off','data',VMsl2);
hold off;
view(-55,10); axis on; camlight('headlight'); %gf_colormap('tank');
xlabel('x'); ylabel('y'); zlabel('z');
%title('3D');
end
%Saving the reference solution:
gf_mesh_get(mesh1, 'save', 'sol_ref_mesh1');
gf_mesh_get(mesh2, 'save', 'sol_ref_mesh2');
gf_mesh_fem_get(mfu1, 'save', 'sol_ref_mesh_fem1');
gf_mesh_fem_get(mfu2, 'save', 'sol_ref_mesh_fem2');
%gf_mesh_im_get(mim1,'save','sol_ref_mim1');
%gf_mesh_im_get(mim2,'save','sol_ref_mim2');
save sol_de_reference1 UU1;
save sol_de_reference2 UU2;
else
% Reconstruction of reference mesh: mesh_ref1, mesh_ref2, mfu_ref1, mfu_ref2, min_ref1, min_ref2
mesh_ref1 = gf_mesh('load', 'sol_ref_mesh1');
mesh_ref2 = gf_mesh('load', 'sol_ref_mesh2');
mfu_ref1 = gf_mesh_fem('load', 'sol_ref_mesh_fem1',mesh_ref1);
mfu_ref2 = gf_mesh_fem('load', 'sol_ref_mesh_fem2',mesh_ref2);
N =gf_mesh_get(mesh_ref2,'dim');
%mfu_ref1 = gf_mesh_fem(mesh_ref1, N); gf_mesh_fem_set(mfu_ref1, 'classical fem', elements_degree);
%mfu_ref2 = gf_mesh_fem(mesh_ref2, N);gf_mesh_fem_set(mfu_ref2, 'classical fem', elements_degree);
mim_ref1 = gf_mesh_im(mesh_ref1, 4);
mim_ref2 = gf_mesh_im(mesh_ref2, 4);
U1ref = load('sol_de_reference1');
U2ref = load('sol_de_reference2');
%U1ee = gf_compute(mfu_ref1, U1ref.UU1, 'interpolate on', mfu_ref1);
U1e = gf_compute(mfu1, U1, 'interpolate on', mfu_ref1);
U2e = gf_compute(mfu2, U2, 'interpolate on', mfu_ref2);
%Calculation of the displacement relatif error (in percentage) for H1 and L2 norms:
n_tot1 = gf_compute(mfu_ref1, U1e-U1ref.UU1, 'L2 norm', mim_ref1);
n_tot2 = gf_compute(mfu_ref2, U2e-U2ref.UU2, 'L2 norm', mim_ref2);
n_ref1 = gf_compute(mfu_ref1, U1ref.UU1, 'L2 norm', mim_ref1);
n_ref2 = gf_compute(mfu_ref2, U2ref.UU2, 'L2 norm', mim_ref2);
m_tot1 = gf_compute(mfu_ref1, U1e-U1ref.UU1, 'H1 norm', mim_ref1);
m_tot2 = gf_compute(mfu_ref2, U2e-U2ref.UU2, 'H1 norm', mim_ref2);
m_ref1 = gf_compute(mfu_ref1, U1ref.UU1, 'H1 norm', mim_ref1);
m_ref2 = gf_compute(mfu_ref2, U2ref.UU2, 'H1 norm', mim_ref2);
n1 = 100*n_tot1/n_ref1;
n2 = 100*n_tot2/n_ref2;
m1 = 100*m_tot1/m_ref1;
m2 = 100*m_tot2/m_ref2;
Y11(yy,zz,xx)=n1;
Y12(yy,zz,xx)=n2;
Y21(yy,zz,xx)=m1;
Y22(yy,zz,xx)=m2;
end
end
end
end
if (ref_sol == 1 ) % Curves of error depending on h
Y11(1,:,1)
Y12(1,:,1)
Y21(1,:,1)
Y22(1,:,1)
X=1./Nxy
figure(2);
msize= size(X,2);
loglog(X,Y11(1,:,1),'o-k', 'linewidth', 2, 'MarkerSize', 15 )
hold on;
loglog(X,Y12(1,:,1),'+--k', 'linewidth', 2, 'MarkerSize', 15);
hold off;
P1 = polyfit(log(X),log(Y11(1,:,1)),1);
P2 = polyfit(log(X),log(Y12(1,:,1)),1);
legend(strcat('norm on Omega 1 (slope=',num2str(P1(1)), ')'), ...
strcat('norm on Omega 2 (slope=',num2str(P2(1)), ')'), ...
'Location', 'NorthWest');
grid on;
axesobj = findobj('type', 'axes');
set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
set(axesobj, 'linewidth', 4);
xlabel('h');
ylabel('L^2 relative error (in %)');
set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'})
figure(3);
loglog(X,Y21(1,:,1),'o-k', 'linewidth', 2, 'MarkerSize', 15 )
hold on;
loglog(X,Y22(1,:,1),'+--k', 'linewidth', 2, 'MarkerSize', 15);
hold off;
P3 = polyfit(log(X),log(Y21(1,:,1)),1);
P4 = polyfit(log(X),log(Y22(1,:,1)),1);
legend(strcat('norm on Omega 1 (slope=',num2str(P3(1)), ')'), ...
strcat('norm on Omega 2 (slope=',num2str(P4(1)), ')'), ...
'Location', 'NorthWest');
grid on;
axesobj = findobj('type', 'axes');
set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
set(axesobj, 'linewidth', 4);
xlabel('h');
ylabel('H^1 relative error (in %)');
set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'})
end
if (ref_sol == 2 ) % Curve of error depending on gamma0
% Theta = [0 1 -1];
Y11(:,1,:)
Y12(:,1,:)
Y21(:,1,:)
Y22(:,1,:)
X = gamma
figure(2);
loglog(X,Y11(:,1,1)','o-k', 'linewidth', 2, 'MarkerSize', 15 )
hold on;
loglog(X,Y11(:,1,2)','+-k', 'linewidth', 2, 'MarkerSize', 15 );
loglog(X,Y11(:,1,3)','x-k', 'linewidth', 2, 'MarkerSize', 15 );
hold off;
P1 = polyfit(log(X),log(Y11(:,1,1)'),1);
P2 = polyfit(log(X),log(Y11(:,1,2)'),1);
P3 = polyfit(log(X),log(Y11(:,1,3)'),1);
legend(strcat('norm for theta = 0 '), ...
strcat('norm for theta = 1 '), ...
strcat('norm for theta = -1'), ...
'Location', 'NorthWest');
grid on;
axesobj = findobj('type', 'axes');
set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
set(axesobj, 'linewidth', 4);
xlabel('gamma0');
ylabel('L^2(Omega 1) relative error (in %)');
% set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'})
figure(3);
loglog(X,Y12(:,1,1)','o-k', 'linewidth', 2, 'MarkerSize', 15 )
hold on;
loglog(X,Y12(:,1,2)','+-k', 'linewidth', 2, 'MarkerSize', 15 );
loglog(X,Y12(:,1,3)','x-k', 'linewidth', 2, 'MarkerSize', 15 );
hold off;
P1 = polyfit(log(X),log(Y12(:,1,1)'),1); % the first and second are too bad;
P2 = polyfit(log(X),log(Y12(:,1,2)'),1);
P3 = polyfit(log(X),log(Y12(:,1,3)'),1);
legend(strcat('norm for theta = 0 '), ...
strcat('norm for theta = 1 '), ...
strcat('norm for theta = -1'), ...
'Location', 'NorthWest');
grid on;
axesobj = findobj('type', 'axes');
set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
set(axesobj, 'linewidth', 4);
xlabel('gamma0');
ylabel('L^2(Omega 2) relative error (in %)');
% set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'})
figure(4);
loglog(X,Y21(:,1,1)','o-k', 'linewidth', 2, 'MarkerSize', 15 )
hold on;
loglog(X,Y21(:,1,2)','+-k', 'linewidth', 2, 'MarkerSize', 15 );
loglog(X,Y21(:,1,3)','x-k', 'linewidth', 2, 'MarkerSize', 15 );
hold off;
P1 = polyfit(log(X),log(Y21(:,1,1)'),1); % the first and second are too bad;
P2 = polyfit(log(X),log(Y21(:,1,2)'),1);
P3 = polyfit(log(X),log(Y21(:,1,3)'),1);
legend(strcat('norm for theta = 0 '), ...
strcat('norm for theta = 1 '), ...
strcat('norm for theta = -1'), ...
'Location', 'NorthWest');
grid on;
axesobj = findobj('type', 'axes');
set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
set(axesobj, 'linewidth', 4);
xlabel('gamma0');
ylabel('H^1(Omega 1) relative error (in %)');
% set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'})
figure(5);
loglog(X,Y22(:,1,1),'o-k', 'linewidth', 2, 'MarkerSize', 15 )
hold on;
loglog(X,Y22(:,1,2),'+-k', 'linewidth', 2, 'MarkerSize', 15 );
loglog(X,Y22(:,1,3),'x-k', 'linewidth', 2, 'MarkerSize', 15 );
hold off;
P1 = polyfit(log(X),log(Y22(:,1,1)'),1); % the first and second are too bad;
P2 = polyfit(log(X),log(Y22(:,1,2)'),1);
P3 = polyfit(log(X),log(Y22(:,1,3)'),1);
legend(strcat('norm for theta = 0 '), ...
strcat('norm for theta = 1 '), ...
strcat('norm for theta = -1'), ...
'Location', 'NorthWest');
grid on;
axesobj = findobj('type', 'axes');
set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
set(axesobj, 'linewidth', 4);
xlabel('gamma0');
ylabel('H^1(Omega 2) relative error (in %)');
end
|