1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
% Copyright (C) 2005-2016 Yves Renard, Julien Pommier.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
gf_workspace('clear all'); clear all;
N = 2;
NX=10; NY=14;
m=gfMesh('regular simplices',0:0.4/NX:0.4, 0:1.2/NY:1.2);
% m=gfMesh('cartesian',0:1/NX:1, 0:1/NY:1);
% m=gfMesh('cartesian',0:0.4/NX:0.4, 0:1.2/NY:1.2);
useKL=1; % use the Kirchhoff-Love plate model, or just a pure
% bilaplacian problem
D=1.0; % Flexion modulus
if useKL, NU=0.3; end; % poisson ratio (0 <= NU <= 1)
mim=gfMeshIm(m);
mfu=gfMeshFem(m);
mfd=gfMeshFem(m);
set(mim, 'integ',gfInteg('IM_TRIANGLE(13)'));
set(mfu, 'fem',gfFem('FEM_ARGYRIS'));
set(mfd, 'fem',gfFem('FEM_PK(2,5)'));
% set(mim, 'integ', gfInteg('IM_GAUSS_PARALLELEPIPED(2,10)'));
% set(mfu, 'fem', gfFem('FEM_REDUCED_QUADC1_COMPOSITE'));
% set(mfd, 'fem', gfFem('FEM_QK(2,3)'));
% flst = get(m, 'outer_faces');
% n = get(m, 'normal of faces', flst);
% ftop = flst(:,find(abs(n(1,:)-1) < 1e-5));
% fbottom = flst(:,find(abs(n(1,:)+1) < 1e-5));
% fleft = flst(:,find(abs(n(2,:)+1) < 1e-5));
% fright = flst(:,find(abs(n(2,:)-1) < 1e-5));
ftop = get(m, 'outer faces with direction', [ 1; 0], 0.1);
fbottom = get(m, 'outer faces with direction', [-1; 0], 0.1);
fleft = get(m, 'outer faces with direction', [0; -1], 0.1);
fright = get(m, 'outer faces with direction', [0; 1], 0.1);
FORCE_BOUNDARY_NUM=1;
MOMENTUM_BOUNDARY_NUM=2;
SIMPLE_SUPPORT_BOUNDARY_NUM=3;
CLAMPED_BOUNDARY_NUM=4;
set(m, 'region', FORCE_BOUNDARY_NUM, fright);
set(m, 'region', SIMPLE_SUPPORT_BOUNDARY_NUM, [fleft ftop fbottom]);
set(m, 'region', CLAMPED_BOUNDARY_NUM, [fleft ftop fbottom]);
set(m, 'region', MOMENTUM_BOUNDARY_NUM, [ftop fbottom]);
FT=2.;
sol_u=get(mfd, 'eval',{sprintf('sin(%g*(x+y))',FT)});
sol_f=sol_u*FT*FT*FT*FT*N*N*D;
sol_lapl_u=-FT*FT*sol_u*N;
md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mfu);
if useKL
gf_model_set(md, 'add initialized data', 'D', [D]);
gf_model_set(md, 'add initialized data', 'nu', [NU]);
gf_model_set(md, 'add Kirchhoff-Love plate brick', mim, 'u', 'D', 'nu');
M = zeros(N,N, get(mfd,'nbdof'));
else
gf_model_set(md, 'add initialized data', 'D', [D]);
gf_model_set(md, 'add bilaplacian brick', mim, 'u', 'D');
M = zeros(1, get(mfd, 'nbdof'));
end;
gf_model_set(md, 'add initialized fem data', 'VolumicData', mfd, ...
get(mfd, 'eval', {'1-(x-y).^2'}));
gf_model_set(md, 'add source term brick', mim, 'u', 'VolumicData');
gf_model_set(md, 'add initialized fem data', 'M', mfd, M);
gf_model_set(md, 'add normal derivative source term brick', mim, 'u', ...
'M', MOMENTUM_BOUNDARY_NUM);
if (useKL)
H = zeros(N, N, get(mfd, 'nbdof'));
F = zeros(N, get(mfd, 'nbdof'));
gf_model_set(md, 'add initialized fem data', 'H', mfd, H);
gf_model_set(md, 'add initialized fem data', 'F', mfd, F);
gf_model_set(md, 'add Kirchhoff-Love Neumann term brick', mim, 'u', ...
'H', 'F', FORCE_BOUNDARY_NUM);
else
F = zeros(1, N, get(mfd, 'nbdof'));
gf_model_set(md, 'add initialized fem data', 'F', mfd, F);
gf_model_set(md, 'add normal source term brick', mim, 'u', 'F', ...
FORCE_BOUNDARY_NUM);
end;
gf_model_set(md, ...
'add normal derivative Dirichlet condition with penalization', ...
mim, 'u', 1e10, CLAMPED_BOUNDARY_NUM);
gf_model_set(md, 'add Dirichlet condition with penalization', ...
mim, 'u', 1e10, SIMPLE_SUPPORT_BOUNDARY_NUM);
t0=cputime;
gf_model_get(md, 'solve', 'noisy');
U = gf_model_get(md, 'variable', 'u');
disp(sprintf('solve done in %.2f sec', cputime-t0));
gf_plot(mfu,U,'mesh','on');
colorbar;
disp(sprintf('H2 norm of the solution: %g', gf_compute(mfu,U,'H2 norm', mim)));
%err=gf_compute(mfu,U,'interpolate on',mfd) - sol_u;
%disp(sprintf('H1 norm of the error: %g', gf_compute(mfd,err,'H1 norm', mim)));
%disp(sprintf('H2 norm of the error: %g', gf_compute(mfd,err,'H2 norm', mim)));
|