File: demo_bilaplacian.m

package info (click to toggle)
getfem%2B%2B 5.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 32,668 kB
  • ctags: 20,930
  • sloc: cpp: 110,660; ansic: 72,312; python: 6,064; sh: 3,608; perl: 1,710; makefile: 1,343
file content (135 lines) | stat: -rw-r--r-- 4,809 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
% Copyright (C) 2005-2016 Yves Renard, Julien Pommier.
%
% This file is a part of GetFEM++
%
% GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
% under  the  terms  of the  GNU  Lesser General Public License as published
% by  the  Free Software Foundation;  either version 3 of the License,  or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program  is  distributed  in  the  hope  that it will be useful,  but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You  should  have received a copy of the GNU Lesser General Public License
% along  with  this program;  if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.

gf_workspace('clear all'); clear all;
N = 2;
NX=10; NY=14;
m=gfMesh('regular simplices',0:0.4/NX:0.4, 0:1.2/NY:1.2);
% m=gfMesh('cartesian',0:1/NX:1, 0:1/NY:1);
% m=gfMesh('cartesian',0:0.4/NX:0.4, 0:1.2/NY:1.2);


useKL=1; % use the Kirchhoff-Love plate model, or just a pure
         % bilaplacian problem

D=1.0;       % Flexion modulus

if useKL, NU=0.3; end; % poisson ratio (0 <= NU <= 1)

mim=gfMeshIm(m); 
mfu=gfMeshFem(m); 
mfd=gfMeshFem(m);
set(mim, 'integ',gfInteg('IM_TRIANGLE(13)'));
set(mfu, 'fem',gfFem('FEM_ARGYRIS'));
set(mfd, 'fem',gfFem('FEM_PK(2,5)'));

% set(mim, 'integ', gfInteg('IM_GAUSS_PARALLELEPIPED(2,10)'));
% set(mfu, 'fem', gfFem('FEM_REDUCED_QUADC1_COMPOSITE'));
% set(mfd, 'fem', gfFem('FEM_QK(2,3)'));

% flst = get(m, 'outer_faces');
% n = get(m, 'normal of faces', flst);
% ftop     = flst(:,find(abs(n(1,:)-1) < 1e-5));
% fbottom  = flst(:,find(abs(n(1,:)+1) < 1e-5));
% fleft    = flst(:,find(abs(n(2,:)+1) < 1e-5));
% fright   = flst(:,find(abs(n(2,:)-1) < 1e-5));

ftop    = get(m, 'outer faces with direction', [ 1; 0], 0.1);
fbottom = get(m, 'outer faces with direction', [-1; 0], 0.1);
fleft   = get(m, 'outer faces with direction', [0; -1], 0.1);
fright  = get(m, 'outer faces with direction', [0;  1], 0.1);



FORCE_BOUNDARY_NUM=1;
MOMENTUM_BOUNDARY_NUM=2;
SIMPLE_SUPPORT_BOUNDARY_NUM=3;
CLAMPED_BOUNDARY_NUM=4;

set(m, 'region', FORCE_BOUNDARY_NUM, fright);
set(m, 'region', SIMPLE_SUPPORT_BOUNDARY_NUM, [fleft ftop fbottom]);
set(m, 'region', CLAMPED_BOUNDARY_NUM, [fleft ftop fbottom]);
set(m, 'region', MOMENTUM_BOUNDARY_NUM, [ftop fbottom]);

FT=2.;
sol_u=get(mfd, 'eval',{sprintf('sin(%g*(x+y))',FT)});
sol_f=sol_u*FT*FT*FT*FT*N*N*D;
sol_lapl_u=-FT*FT*sol_u*N;

  
md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mfu);


if useKL
  gf_model_set(md, 'add initialized data', 'D', [D]);
  gf_model_set(md, 'add initialized data', 'nu', [NU]);
  gf_model_set(md, 'add Kirchhoff-Love plate brick', mim, 'u', 'D', 'nu');
  M = zeros(N,N, get(mfd,'nbdof'));
else
  gf_model_set(md, 'add initialized data', 'D', [D]);
  gf_model_set(md, 'add bilaplacian brick', mim, 'u', 'D');
  M = zeros(1, get(mfd, 'nbdof'));
end;

gf_model_set(md, 'add initialized fem data', 'VolumicData', mfd, ...
             get(mfd, 'eval', {'1-(x-y).^2'}));

gf_model_set(md, 'add source term brick', mim, 'u', 'VolumicData');

  
gf_model_set(md, 'add initialized fem data', 'M', mfd, M);
gf_model_set(md, 'add normal derivative source term brick', mim, 'u', ...
             'M', MOMENTUM_BOUNDARY_NUM);

if (useKL) 
  H = zeros(N, N, get(mfd, 'nbdof'));
  F = zeros(N, get(mfd, 'nbdof'));
  gf_model_set(md, 'add initialized fem data', 'H', mfd, H);
  gf_model_set(md, 'add initialized fem data', 'F', mfd, F);
  gf_model_set(md, 'add Kirchhoff-Love Neumann term brick', mim, 'u', ...
               'H', 'F', FORCE_BOUNDARY_NUM);
else
  F = zeros(1, N, get(mfd, 'nbdof'));
  gf_model_set(md, 'add initialized fem data', 'F', mfd, F);
  gf_model_set(md, 'add normal source term brick', mim, 'u', 'F', ...
       		 FORCE_BOUNDARY_NUM);
end;
 
gf_model_set(md, ...
             'add normal derivative Dirichlet condition with penalization', ...
 	     mim, 'u', 1e10, CLAMPED_BOUNDARY_NUM);
 
gf_model_set(md, 'add Dirichlet condition with penalization', ...
  	     mim, 'u', 1e10, SIMPLE_SUPPORT_BOUNDARY_NUM);

t0=cputime; 
gf_model_get(md, 'solve', 'noisy');
U = gf_model_get(md, 'variable', 'u');
disp(sprintf('solve done in %.2f sec', cputime-t0));



gf_plot(mfu,U,'mesh','on');
colorbar;

disp(sprintf('H2 norm of the solution: %g', gf_compute(mfu,U,'H2 norm', mim)));

%err=gf_compute(mfu,U,'interpolate on',mfd) - sol_u;

%disp(sprintf('H1 norm of the error: %g', gf_compute(mfd,err,'H1 norm', mim)));
%disp(sprintf('H2 norm of the error: %g', gf_compute(mfd,err,'H2 norm', mim)));