1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
|
% Copyright (C) 2006-2016 Mathieu Fabre.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
disp('Resolution of a contact problem in 2D or 3D with two elastics bodies');
disp('with a fictitious domain method and Nitsche s method');
clear all;
draw_mesh = false;
% gf_workspace('clear all');
ref_sol = 0;% 0 Reference solution
% 1 Error in L2 and H1 in Omega1 Omega2
% 2 link between gamma0 and theta
N = 2; % 2 ou 3 dimensions
R = 0.25;
dirichlet_val = 0;
f_coeff = 0.1;
if (ref_sol == 0)
method = [-1]; % theta
gamma = [1/200]; % 1/200
nxy = [60]; % 2D ->400 and 3D -> 30
ls_degree = 2;
penalty_parameter = 10E-8;
vertical_force = -0.1;
end
if (ref_sol == 1)
method = [-1];
gamma = [1/200];
if (N==2)
nxy=[5 15 10 15 27 37 51 61 75 90 101 121];
else
nxy = [5 10 15 20 25 30];
end
ls_degree = 2;
penalty_parameter = 10E-8;
vertical_force = -0.1;
end
if (ref_sol == 2)
method = [0 1 -1];
gamma = [400 200 100 50 25 10 1 1/10 1/25 1/50 1/100 1/200 1/400];
nxy = [21];
ls_degree = 2;
penalty_parameter = 10E-8;
vertical_force = -0.1;
end
for xx = 1:1:size(method,2)
for yy = 1:1:size(gamma,2)
for zz = 1:1:size(nxy,2)
theta = method(xx);
gamma0 = gamma(yy);
NX = nxy(zz);
% Definition of fictitious domain mesh with quadrangles and order 1 of level-set
if (N==2)
m=gf_mesh('regular simplices', -.5:(1/NX):.5, -.5:(1/NX):.5);
%m=gf_mesh('cartesian', -.5:(1/NX):.5, -.5:(1/NX):.5);
else
m=gf_mesh('regular simplices', -.5:(1/NX):.5, -.5:(1/NX):.5, -.5:(1/NX):.5);
end
% gf_plot_mesh(m, 'convexes', 'on');
% pause;
ls1=gf_levelset(m, ls_degree);
ls2=gf_levelset(m, ls_degree);
mf_ls1=gfObject(gf_levelset_get(ls1, 'mf'));
mf_ls2=gfObject(gf_levelset_get(ls2, 'mf'));
mfu=gfMeshFem(m,N);
if (N==2)
set(mfu, 'fem', gf_fem('FEM_PK(2,2)')); % set(mfu, 'fem', gf_fem('FEM_PK(2,2)'));
else
set(mfu, 'fem', gf_fem('FEM_PK(3,2)')); % set(mfu, 'fem', gf_fem('FEM_PK(2,2)'));
end
mfvm=gfMeshFem(m,1);
if (N==2)
set(mfvm, 'fem', gf_fem('FEM_PK_DISCONTINUOUS(2,1)')); % set(mfvm, 'fem', gf_fem('FEM_PK_DISCONTINUOUS(2,1)'));
else
set(mfvm, 'fem', gf_fem('FEM_PK_DISCONTINUOUS(3,1)')); % set(mfvm, 'fem', gf_fem('FEM_PK_DISCONTINUOUS(2,1)'));
end
mls1=gfMeshLevelSet(m);
mls2=gfMeshLevelSet(m);
% definition of Omega 1 (circle)
P=get(mf_ls1, 'basic dof nodes');
if (N==2)
x = P(1,:); y = P(2,:);
ULS1=1000*ones(1,numel(x));
ULS1 = min(ULS1, sqrt(x.^2 + y.^2) - R);
else
x = P(1,:); y = P(2,:); z = P(3,:);
ULS1=1000*ones(1,numel(x));
ULS1 = min(ULS1, sqrt(x.^2 + y.^2 + z.^2) - R);
end
gf_levelset_set(ls1, 'values', ULS1);
% definition of Omega 2 (rectangle)
P=get(mf_ls2, 'basic dof nodes');
if (N==2)
x = P(1,:); y = P(2,:);
ULS2=1000*ones(1,numel(x));
yc = -0.25; xc=0;
ULS2=min(ULS2,y-yc);
else
x = P(1,:); y = P(2,:); z = P(3,:);
ULS2=1000*ones(1,numel(x));
zc = -0.25; xc=0;
ULS2=min(ULS2,z-zc);
end
gf_levelset_set(ls2, 'values', ULS2);
set(mls1, 'add', ls1);
set(mls1, 'adapt');
set(mls2, 'add', ls2);
set(mls2, 'adapt');
% Dirichlet's boundary
GAMMAC = 1; GAMMAD = 2;
border = gf_mesh_get(m,'outer faces');
normals = gf_mesh_get(m, 'normal of faces', border);
if (N==2)
contact_boundary=border(:, find(normals(2, :) < -0.01)); % Normal vector is -e2
else
contact_boundary=border(:, find(normals(3, :) < -0.01)); % Normal vector is -e3
end
gf_mesh_set(m, 'region', GAMMAD, contact_boundary);
%figure 1 : plot figure
if (draw_mesh)
figure(1);
if (N==2)
gf_plot_mesh(get(mls1,'cut mesh')); % ,'curved', 'on'
hold on; gf_plot_mesh(get(mls2,'cut mesh')); hold off;
hold on; gf_plot_mesh(m, 'regions', GAMMAD, 'convexes', 'on'); %plot de bord avec condition de type Dirichlet
title('boundary with Dirichlet condition in red');hold off;
else
gf_plot_mesh(get(mls1,'cut mesh')); % ,'curved', 'on'
hold on; gf_plot_mesh(get(mls2,'cut mesh')); hold off;
hold on; gf_plot_mesh(m, 'regions', GAMMAD, 'convexes', 'on'); %plot de bord avec condition de type Dirichlet
title('boundary with Dirichlet condition in red');hold off;
xlabel('x'); ylabel('y'); zlabel('z');
title('Displacement solution');
end
end
%Finites elements' method on mls1 and mls2
if (N==2)
mim = gfMeshIm('levelset', mls1,'all', gf_integ('IM_TRIANGLE(5)'));
mim_bound = gfMeshIm('levelset', mls1, 'boundary', gf_integ('IM_TRIANGLE(5)'));
mim1 = gfMeshIm('levelset', mls1, 'inside', gf_integ('IM_TRIANGLE(5)'));
mim2 = gfMeshIm('levelset', mls2, 'inside', gf_integ('IM_TRIANGLE(5)'));
else
mim_bound = gfMeshIm('levelset', mls1, 'boundary', gf_integ('IM_TETRAHEDRON(5)'));
mim = gfMeshIm('levelset', mls1, 'all', gf_integ('IM_TETRAHEDRON(5)'));
mim1 = gfMeshIm('levelset', mls1, 'inside', gf_integ('IM_TETRAHEDRON(5)'));
mim2 = gfMeshIm('levelset', mls2, 'inside', gf_integ('IM_TETRAHEDRON(5)'));
end
set(mim, 'integ', 4);
set(mim1, 'integ', 4);
set(mim2, 'integ', 4);
dof_out = get(mfu, 'dof from im', mim1);
cv_out = get(mim1, 'convex_index');
cv_in = setdiff(gf_mesh_get(m, 'cvid'), cv_out);
mfu1 = gfMeshFem('partial', mfu, dof_out, cv_in);
dof_out = get(mfu, 'dof from im', mim2);
cv_out = get(mim2, 'convex_index');
cv_in = setdiff(gf_mesh_get(m, 'cvid'), cv_out);
mfu2 = gfMeshFem('partial', mfu, dof_out, cv_in);
%Elastic model
md=gf_model('real');
gf_model_set(md,'add fem variable', 'u1', mfu1);
gf_model_set(md,'add fem variable', 'u2', mfu2);
gf_model_set(md,'add initialized fem data', 'd1', mf_ls1, ULS1);
gf_model_set(md,'add initialized fem data', 'd2', mf_ls2, ULS2);
gf_model_set(md,'add initialized data', 'gamma0', gamma0);
gf_model_set(md, 'add initialized data', 'friction_coeff',[f_coeff]);
clambda = 1; % Lame coefficient
cmu = 1; % Lame coefficient
gf_model_set(md, 'add initialized data', 'cmu', [cmu]);
gf_model_set(md, 'add initialized data', 'clambda', [clambda]);
gf_model_set(md, 'add isotropic linearized elasticity brick', mim1, 'u1','clambda', 'cmu');
gf_model_set(md, 'add isotropic linearized elasticity brick', mim2, 'u2','clambda', 'cmu');
if (N==2)
gf_model_set(md, 'add initialized data', 'Fdata', [0 vertical_force]);
else
gf_model_set(md, 'add initialized data', 'Fdata', [0 0 vertical_force]);
end
gf_model_set(md, 'add source term brick', mim1, 'u1', 'Fdata');
if (N==2)
Ddata = zeros(1, 2);
else
Ddata = zeros(1, 3);
end
gf_model_set(md, 'add initialized data', 'Ddata', Ddata);
gf_model_set(md, 'add Dirichlet condition with simplification', 'u2', GAMMAD, 'Ddata');
if (N==2)
cpoints = [0, 0, 0, 0.1]; % constrained points for 2d
cunitv = [1, 0, 1, 0]; % corresponding constrained directions for 2d, better with [0, 0.1]
else
cpoints = [0, 0, 0, 0, 0, 0, 0, 0, 0.1]; % constrained points for 3d
cunitv = [1, 0, 0, 0, 1, 0, 0, 1, 0]; % corresponding constrained directions for 3d, better with [0, 0.1]
end
gf_model_set(md, 'add initialized data', 'cpoints', cpoints);
gf_model_set(md, 'add initialized data', 'cunitv', cunitv);
gf_model_set(md, 'add pointwise constraints with multipliers', 'u1', 'cpoints', 'cunitv');
gf_model_set(md, 'add initialized data', 'penalty_param1', [penalty_parameter]);
indmass = gf_model_set(md, 'add mass brick', mim1, 'u1', 'penalty_param1');
% gf_model_set(md, 'add initialized data', 'penalty_param2', [penalty_parameter]);
% indmass = gf_model_set(md, 'add mass brick', mim2, 'u2', 'penalty_param2');
gf_model_set(md,'add Nitsche fictitious domain contact brick', mim_bound, 'u1', 'u2', 'd1', 'd2', 'gamma0', theta, 'friction_coeff');
disp('solve');
% niter= 20;
% gf_model_get(md, 'test tangent matrix term', 'u1', 'u2', 1e-6, niter, 10.0);
% gf_model_get(md, 'test tangent matrix', 1e-6, niter, 10);
% gf_model_get(md, 'test tangent matrix', 1e-6, 20, 10);
niter= 100;
gf_model_get(md, 'solve', 'max_res', 1E-9, 'max_iter', niter, 'noisy');
U1 = gf_model_get(md, 'variable', 'u1'); UU1 = gf_model_get(md, 'variable', 'u1');
VM1 = gf_model_get(md, 'compute_isotropic_linearized_Von_Mises_or_Tresca', ...
'u1', 'clambda', 'cmu', mfvm);
U2 = gf_model_get(md, 'variable', 'u2'); UU2 = gf_model_get(md, 'variable', 'u2');
VM2 = gf_model_get(md, 'compute_isotropic_linearized_Von_Mises_or_Tresca', ...
'u2', 'clambda', 'cmu', mfvm);
% plot figure
if (ref_sol == 0)
if (N==2)
sl1=gf_slice({'isovalues', -1, mf_ls1, ULS1, 0}, m, 5);
P1=gf_slice_get(sl1,'pts'); dP1=gf_compute(mfu1,U1,'interpolate on',sl1);
gf_slice_set(sl1, 'pts', P1 + dP1);
VMsl1=gf_compute(mfvm,VM1,'interpolate on',sl1);
sl2=gf_slice({'isovalues', -1, mf_ls2, ULS2, 0}, m, 5);
P2=gf_slice_get(sl2,'pts'); dP2=gf_compute(mfu2,U2,'interpolate on',sl2);
gf_slice_set(sl2, 'pts', P2+dP2);
VMsl2=gf_compute(mfvm,VM2,'interpolate on',sl2);
gf_plot_slice(sl1,'mesh','off','mesh_slice_edges','off','data',VMsl1);
hold on;
gf_plot_slice(sl2,'mesh','off','mesh_slice_edges','off','data',VMsl2);
hold off;
else
sl1=gf_slice({'boundary',{'intersection',{'ball',-1,[0;0;0],R},{'planar',1,[0;0;0],[1;0;0]}}}, m, 5);
sl2=gf_slice({'boundary',{'intersection',{'planar',-1,[0;0;zc],[0;0;1]},{'planar',1,[0;0;0],[1;0;0]}}}, m, 5);
P1=gf_slice_get(sl1,'pts');P2=gf_slice_get(sl2,'pts');
dP1=gf_compute(mfu1,U1,'interpolate on',sl1);
dP2=gf_compute(mfu2,U2,'interpolate on',sl2);
gf_slice_set(sl1, 'pts', P1+dP1);
gf_slice_set(sl2, 'pts', P2+dP2);
VMsl1=gf_compute(mfvm,VM1,'interpolate on',sl1);
VMsl2=gf_compute(mfvm,VM2,'interpolate on',sl2);
set(gcf,'renderer','zbuffer');
h=gf_plot_slice(sl1,'mesh','off','mesh_faces','on','mesh_slice_edges','on','data',VMsl1);
hold on;
h=gf_plot_slice(sl2,'mesh','off','mesh_slice_edges','off','data',VMsl2);
hold off;
view(-55,10); axis on; camlight('headlight'); %gf_colormap('tank');
xlabel('x'); ylabel('y'); zlabel('z');
%title('3D');
end
end;
%plot false fictious domain
% m_fict=gf_mesh('regular simplices', -.5:(1/10):.5, -.5:(1/10):.5);
% hold on; gf_plot_mesh(m_fict); %plot de bord avec condition de type Dirichlet
% hold off;
map(1,:)=[0 200 255]; % bleu foncé
map(2,:)=[0 255 255];
map(3,:)=[128 255 128];
map(4,:)=[255 255 0];
map(5,:)=[255 128 0];
map(6,:)=[255 0 0];
colormap(map./255)
% save the reference solution if res_sol= 0 and else errors in L2 and H1
% Discrétisation de réf N > n/4
if (ref_sol == 0)
gf_mesh_fem_get(mfu, 'save', 'sol_ref_mesh_fem','with_mesh');
save sol_de_reference1 UU1;
save sol_de_reference2 UU2;
dls = gf_levelset_get(ls1, 'degree');
save degree_levelset dls;
else
meshref = gf_mesh('load', 'sol_ref_mesh_fem');
% Reconstruction of mfuref, mfu1ref, mfu2ref, min1ref, min2ref
dlsref = load('degree_levelset', 'dls');
ls1ref=gf_levelset(meshref, dlsref.dls);
ls2ref=gf_levelset(meshref, dlsref.dls);
mf_ls1ref=gfObject(gf_levelset_get(ls1ref, 'mf'));
mf_ls2ref=gfObject(gf_levelset_get(ls2ref, 'mf'));
mfuref=gfMeshFem(meshref,N);
if(N==2)
set(mfuref, 'fem', gf_fem('FEM_PK(2,2)'));
else
set(mfuref, 'fem', gf_fem('FEM_PK(3,2)'));
end
mls1ref=gfMeshLevelSet(meshref);
mls2ref=gfMeshLevelSet(meshref);
P=get(mf_ls1ref, 'basic dof nodes');
if(N==2)
x = P(1,:); y = P(2,:);
ULS1ref=1000*ones(1,numel(x));
ULS1ref = min(ULS1ref, sqrt(x.^2 + y.^2) - R);
else
x = P(1,:); y = P(2,:); z = P(3,:);
ULS1ref=1000*ones(1,numel(x));
ULS1ref = min(ULS1ref, sqrt(x.^2 + y.^2 + z.^2) - R);
end
gf_levelset_set(ls1ref, 'values', ULS1ref);
P=get(mf_ls2ref, 'basic dof nodes');
if(N==2)
x = P(1,:); y = P(2,:);
ULS2ref=1000*ones(1,numel(x));
yc = -0.25; xc=0;
ULS2ref=min(ULS2ref,y-yc);
else
x = P(1,:); y = P(2,:); z = P(3,:);
ULS2ref=1000*ones(1,numel(x));
zc = -0.25; xc=0;
ULS2ref=min(ULS2ref,z-zc);
end
gf_levelset_set(ls2ref, 'values', ULS2ref);
set(mls1ref, 'add', ls1ref);
set(mls1ref, 'adapt');
set(mls2ref, 'add', ls2ref);
set(mls2ref, 'adapt');
if(N==2)
mim1ref = gfMeshIm('levelset', mls1ref, 'inside', gf_integ('IM_TRIANGLE(5)'));
mim2ref = gfMeshIm('levelset', mls2ref, 'inside', gf_integ('IM_TRIANGLE(5)'));
else
mim1ref = gfMeshIm('levelset', mls1ref, 'inside', gf_integ('IM_TETRAHEDRON(5)'));
mim2ref = gfMeshIm('levelset', mls2ref, 'inside', gf_integ('IM_TETRAHEDRON(5)'));
end
set(mim1ref, 'integ', 4);
set(mim2ref, 'integ', 4);
dof_out = get(mfuref, 'dof from im', mim1ref);
cv_out = get(mim1ref, 'convex_index');
cv_in = setdiff(gf_mesh_get(meshref, 'cvid'), cv_out);
mfu1ref = gfMeshFem('partial', mfuref, dof_out, cv_in);
dof_out = get(mfuref, 'dof from im', mim2ref);
cv_out = get(mim2ref, 'convex_index');
cv_in = setdiff(gf_mesh_get(meshref, 'cvid'), cv_out);
mfu2ref = gfMeshFem('partial', mfuref, dof_out, cv_in);
U1ref = load('sol_de_reference1', 'UU1');
U2ref = load('sol_de_reference2', 'UU2');
bB1 = gf_mesh_fem_get(mfu1, 'extension matrix');
U1e = gf_compute(mfu, U1*bB1', 'interpolate on', mfu1ref);
bB2 = gf_mesh_fem_get(mfu2, 'extension matrix');
U2e = gf_compute(mfu, U2*bB2', 'interpolate on', mfu2ref);
n_tot1 = gf_compute(mfu1ref, U1e-U1ref.UU1, 'L2 norm', mim1ref);
n_tot2 = gf_compute(mfu2ref, U2e-U2ref.UU2, 'L2 norm', mim2ref);
n_ref1 = gf_compute(mfu1ref, U1ref.UU1, 'L2 norm', mim1ref);
n_ref2 = gf_compute(mfu2ref, U2ref.UU2, 'L2 norm', mim2ref);
m_tot1 = gf_compute(mfu1ref, U1e-U1ref.UU1, 'H1 norm', mim1ref);
m_tot2 = gf_compute(mfu2ref, U2e-U2ref.UU2, 'H1 norm', mim2ref);
m_ref1 = gf_compute(mfu1ref, U1ref.UU1, 'H1 norm', mim1ref);
m_ref2 = gf_compute(mfu2ref, U2ref.UU2, 'H1 norm', mim2ref);
n1 = 100*n_tot1/n_ref1;
n2 = 100*n_tot2/n_ref2;
m1 = 100*m_tot1/m_ref1;
m2 = 100*m_tot2/m_ref2;
%nddl(zz)= gf_model_get(md,'nbdof');
Y11(yy,zz,xx)=n1;
Y12(yy,zz,xx)=n2;
Y21(yy,zz,xx)=m1;
Y22(yy,zz,xx)=m2;
end
end
end
end
if (ref_sol == 1 ) % Curve of error depending of h
Y11(1,:,1)
Y12(1,:,1)
Y21(1,:,1)
Y22(1,:,1)
X=1./nxy % [1/10 1/16 1/22 1/28 1/34 1/40];
figure(1);
msize= size(X,2);
loglog(X,Y11(1,:,1),'o-k', 'linewidth', 2, 'MarkerSize', 15 )
hold on;
loglog(X,Y12(1,:,1),'+--k', 'linewidth', 2, 'MarkerSize', 15);
hold off;
P1 = polyfit(log(X),log(Y11(1,:,1)),1); % the first and second are too bad;
P2 = polyfit(log(X),log(Y12(1,:,1)),1);
legend(strcat('norm on Omega 1 (slope=',num2str(P1(1)), ')'), ...
strcat('norm on Omega 2 (slope=',num2str(P2(1)), ')'), ...
'Location', 'NorthWest');
grid on;
axesobj = findobj('type', 'axes');
set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
set(axesobj, 'linewidth', 4);
xlabel('h');
ylabel('L^2 relative error (in %)');
set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'})
figure(2);
loglog(X,Y21(1,:,1),'o-k', 'linewidth', 2, 'MarkerSize', 15 )
hold on;
loglog(X,Y22(1,:,1),'+--k', 'linewidth', 2, 'MarkerSize', 15);
hold off;
P3 = polyfit(log(X),log(Y21(1,:,1)),1);
P4 = polyfit(log(X),log(Y22(1,:,1)),1);
legend(strcat('norm on Omega 1 (slope=',num2str(P3(1)), ')'), ...
strcat('norm on Omega 2 (slope=',num2str(P4(1)), ')'), ...
'Location', 'NorthWest');
grid on;
axesobj = findobj('type', 'axes');
set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
set(axesobj, 'linewidth', 4);
xlabel('h');
ylabel('H^1 relative error (in %)');
set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'})
theta
gamma0
N
end
if (ref_sol == 2 ) % Curve of error depending of gamma0
% method = [0 1 -1];
Y11(:,1,:)
Y12(:,1,:)
Y21(:,1,:)
Y22(:,1,:)
X = gamma
figure(1);
loglog(X,Y11(:,1,1)','o-k', 'linewidth', 2, 'MarkerSize', 15 )
hold on;
loglog(X,Y11(:,1,2)','+-k', 'linewidth', 2, 'MarkerSize', 15 );
loglog(X,Y11(:,1,3)','x-k', 'linewidth', 2, 'MarkerSize', 15 );
hold off;
P1 = polyfit(log(X),log(Y11(:,1,1)'),1); % the first and second are too bad;
P2 = polyfit(log(X),log(Y11(:,1,2)'),1);
P3 = polyfit(log(X),log(Y11(:,1,3)'),1);
legend(strcat('norm for theta = 0 '), ...
strcat('norm for theta = 1 '), ...
strcat('norm for theta = -1'), ...
'Location', 'NorthWest');
grid on;
axesobj = findobj('type', 'axes');
set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
set(axesobj, 'linewidth', 4);
xlabel('gamma0');
ylabel('L^2(Omega 1) relative error (in %)');
% set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'})
figure(2);
loglog(X,Y12(:,1,1)','o-k', 'linewidth', 2, 'MarkerSize', 15 )
hold on;
loglog(X,Y12(:,1,2)','+-k', 'linewidth', 2, 'MarkerSize', 15 );
loglog(X,Y12(:,1,3)','x-k', 'linewidth', 2, 'MarkerSize', 15 );
hold off;
P1 = polyfit(log(X),log(Y12(:,1,1)'),1); % the first and second are too bad;
P2 = polyfit(log(X),log(Y12(:,1,2)'),1);
P3 = polyfit(log(X),log(Y12(:,1,3)'),1);
legend(strcat('norm for theta = 0 '), ...
strcat('norm for theta = 1 '), ...
strcat('norm for theta = -1'), ...
'Location', 'NorthWest');
grid on;
axesobj = findobj('type', 'axes');
set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
set(axesobj, 'linewidth', 4);
xlabel('gamma0');
ylabel('L^2(Omega 2) relative error (in %)');
% set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'})
figure(3);
loglog(X,Y21(:,1,1)','o-k', 'linewidth', 2, 'MarkerSize', 15 )
hold on;
loglog(X,Y21(:,1,2)','+-k', 'linewidth', 2, 'MarkerSize', 15 );
loglog(X,Y21(:,1,3)','x-k', 'linewidth', 2, 'MarkerSize', 15 );
hold off;
P1 = polyfit(log(X),log(Y21(:,1,1)'),1); % the first and second are too bad;
P2 = polyfit(log(X),log(Y21(:,1,2)'),1);
P3 = polyfit(log(X),log(Y21(:,1,3)'),1);
legend(strcat('norm for theta = 0 '), ...
strcat('norm for theta = 1 '), ...
strcat('norm for theta = -1'), ...
'Location', 'NorthWest');
grid on;
axesobj = findobj('type', 'axes');
set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
set(axesobj, 'linewidth', 4);
xlabel('gamma0');
ylabel('H^1(Omega 1) relative error (in %)');
% set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'})
figure(4);
loglog(X,Y22(:,1,1),'o-k', 'linewidth', 2, 'MarkerSize', 15 )
hold on;
loglog(X,Y22(:,1,2),'+-k', 'linewidth', 2, 'MarkerSize', 15 );
loglog(X,Y22(:,1,3),'x-k', 'linewidth', 2, 'MarkerSize', 15 );
hold off;
P1 = polyfit(log(X),log(Y22(:,1,1)'),1); % the first and second are too bad;
P2 = polyfit(log(X),log(Y22(:,1,2)'),1);
P3 = polyfit(log(X),log(Y22(:,1,3)'),1);
legend(strcat('norm for theta = 0 '), ...
strcat('norm for theta = 1 '), ...
strcat('norm for theta = -1'), ...
'Location', 'NorthWest');
grid on;
axesobj = findobj('type', 'axes');
set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
set(axesobj, 'linewidth', 4);
xlabel('gamma0');
ylabel('H^1(Omega 2) relative error (in %)');
% set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'})
end
|