File: demo_contact_fictitious_domain_nitsche.m

package info (click to toggle)
getfem%2B%2B 5.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 32,668 kB
  • ctags: 20,930
  • sloc: cpp: 110,660; ansic: 72,312; python: 6,064; sh: 3,608; perl: 1,710; makefile: 1,343
file content (624 lines) | stat: -rw-r--r-- 21,320 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
% Copyright (C) 2006-2016 Mathieu Fabre.
%
% This file is a part of GetFEM++
%
% GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
% under  the  terms  of the  GNU  Lesser General Public License as published
% by  the  Free Software Foundation;  either version 3 of the License,  or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program  is  distributed  in  the  hope  that it will be useful,  but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You  should  have received a copy of the GNU Lesser General Public License
% along  with  this program;  if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.

 

disp('Resolution of a contact problem in 2D or 3D with two elastics bodies');
disp('with a fictitious domain method and Nitsche s method');
clear all;

draw_mesh = false;

% gf_workspace('clear all');

ref_sol = 0;% 0 Reference solution
            % 1 Error in L2 and H1 in Omega1 Omega2
            % 2 link between gamma0 and theta
            
N = 2; % 2 ou 3 dimensions
R = 0.25;
dirichlet_val = 0;
f_coeff = 0.1;

if (ref_sol == 0)
    method = [-1]; % theta
    gamma = [1/200]; % 1/200
    nxy = [60]; % 2D ->400 and 3D -> 30
    ls_degree = 2;
    penalty_parameter = 10E-8;
    vertical_force = -0.1;
end
if (ref_sol == 1)
    method = [-1];
    gamma = [1/200];
    if (N==2)
        nxy=[5 15 10 15 27 37 51 61 75 90 101 121];
    else
        nxy = [5 10 15 20 25 30];
    end
    ls_degree = 2;
    penalty_parameter = 10E-8;
    vertical_force = -0.1;  
end
if (ref_sol == 2)
    method = [0 1 -1];
    gamma = [400 200 100 50 25 10 1 1/10 1/25 1/50 1/100 1/200 1/400];
    nxy = [21];
    ls_degree = 2;
    penalty_parameter = 10E-8;
    vertical_force = -0.1;
end


for xx = 1:1:size(method,2)
for yy = 1:1:size(gamma,2)
for zz = 1:1:size(nxy,2)
theta = method(xx);
gamma0 = gamma(yy);
NX = nxy(zz);

% Definition of fictitious domain mesh with quadrangles and order 1 of level-set

if (N==2)
    m=gf_mesh('regular simplices', -.5:(1/NX):.5, -.5:(1/NX):.5);
    %m=gf_mesh('cartesian', -.5:(1/NX):.5, -.5:(1/NX):.5);
else
    m=gf_mesh('regular simplices', -.5:(1/NX):.5, -.5:(1/NX):.5, -.5:(1/NX):.5);
end


% gf_plot_mesh(m, 'convexes', 'on');
% pause;

ls1=gf_levelset(m, ls_degree);
ls2=gf_levelset(m, ls_degree);
mf_ls1=gfObject(gf_levelset_get(ls1, 'mf'));
mf_ls2=gfObject(gf_levelset_get(ls2, 'mf'));
mfu=gfMeshFem(m,N);
if (N==2)
    set(mfu, 'fem', gf_fem('FEM_PK(2,2)')); % set(mfu, 'fem', gf_fem('FEM_PK(2,2)'));
else
    set(mfu, 'fem', gf_fem('FEM_PK(3,2)')); % set(mfu, 'fem', gf_fem('FEM_PK(2,2)'));
end
mfvm=gfMeshFem(m,1);
if (N==2)
    set(mfvm, 'fem', gf_fem('FEM_PK_DISCONTINUOUS(2,1)')); % set(mfvm, 'fem', gf_fem('FEM_PK_DISCONTINUOUS(2,1)'));
else
    set(mfvm, 'fem', gf_fem('FEM_PK_DISCONTINUOUS(3,1)')); % set(mfvm, 'fem', gf_fem('FEM_PK_DISCONTINUOUS(2,1)'));
end

mls1=gfMeshLevelSet(m);
mls2=gfMeshLevelSet(m);

% definition of Omega 1 (circle)
 
P=get(mf_ls1, 'basic dof nodes');
if (N==2)
    x = P(1,:); y = P(2,:);
    ULS1=1000*ones(1,numel(x));
    ULS1 = min(ULS1, sqrt(x.^2 + y.^2) - R);
else
    x = P(1,:); y = P(2,:); z = P(3,:);
    ULS1=1000*ones(1,numel(x));
    ULS1 = min(ULS1, sqrt(x.^2 + y.^2 + z.^2) - R);
end
gf_levelset_set(ls1, 'values', ULS1);

% definition of Omega 2 (rectangle)

P=get(mf_ls2, 'basic dof nodes');
if (N==2)
    x = P(1,:); y = P(2,:);
    ULS2=1000*ones(1,numel(x));
    yc = -0.25; xc=0; 
    ULS2=min(ULS2,y-yc);
else
    x = P(1,:); y = P(2,:); z = P(3,:);
    ULS2=1000*ones(1,numel(x));
    zc = -0.25; xc=0; 
    ULS2=min(ULS2,z-zc);
end
gf_levelset_set(ls2, 'values', ULS2);

set(mls1, 'add', ls1);
set(mls1, 'adapt');

set(mls2, 'add', ls2);
set(mls2, 'adapt');

% Dirichlet's boundary
 
GAMMAC = 1; GAMMAD = 2;


border = gf_mesh_get(m,'outer faces');
normals = gf_mesh_get(m, 'normal of faces', border);
if (N==2)
    contact_boundary=border(:, find(normals(2, :) < -0.01)); % Normal vector is -e2
else
    contact_boundary=border(:, find(normals(3, :) < -0.01)); % Normal vector is -e3
end
gf_mesh_set(m, 'region', GAMMAD, contact_boundary);



%figure 1 : plot figure

if (draw_mesh)
  figure(1);  
  if (N==2)
    gf_plot_mesh(get(mls1,'cut mesh')); % ,'curved', 'on'
    hold on; gf_plot_mesh(get(mls2,'cut mesh')); hold off;
    hold on; gf_plot_mesh(m, 'regions', GAMMAD, 'convexes', 'on'); %plot de bord avec condition de type Dirichlet
    title('boundary with Dirichlet condition in red');hold off;
  else
   
   gf_plot_mesh(get(mls1,'cut mesh')); % ,'curved', 'on'
    hold on; gf_plot_mesh(get(mls2,'cut mesh')); hold off;
   hold on; gf_plot_mesh(m, 'regions', GAMMAD, 'convexes', 'on'); %plot de bord avec condition de type Dirichlet
   title('boundary with Dirichlet condition in red');hold off;
    xlabel('x'); ylabel('y'); zlabel('z');
   title('Displacement solution'); 
  end
end


%Finites elements' method on mls1 and mls2

if (N==2)
    mim = gfMeshIm('levelset', mls1,'all', gf_integ('IM_TRIANGLE(5)'));
    mim_bound = gfMeshIm('levelset', mls1, 'boundary', gf_integ('IM_TRIANGLE(5)'));
    mim1 = gfMeshIm('levelset', mls1, 'inside', gf_integ('IM_TRIANGLE(5)')); 
    mim2 = gfMeshIm('levelset', mls2, 'inside', gf_integ('IM_TRIANGLE(5)'));
else
    mim_bound = gfMeshIm('levelset', mls1, 'boundary', gf_integ('IM_TETRAHEDRON(5)'));
    mim = gfMeshIm('levelset', mls1, 'all', gf_integ('IM_TETRAHEDRON(5)')); 
    mim1 = gfMeshIm('levelset', mls1, 'inside', gf_integ('IM_TETRAHEDRON(5)')); 
    mim2 = gfMeshIm('levelset', mls2, 'inside', gf_integ('IM_TETRAHEDRON(5)'));
end

set(mim, 'integ', 4);
set(mim1, 'integ', 4);
set(mim2, 'integ', 4);

dof_out = get(mfu, 'dof from im', mim1);
cv_out = get(mim1, 'convex_index');
cv_in = setdiff(gf_mesh_get(m, 'cvid'), cv_out);
mfu1 = gfMeshFem('partial', mfu, dof_out, cv_in);

dof_out = get(mfu, 'dof from im', mim2);
cv_out = get(mim2, 'convex_index');
cv_in = setdiff(gf_mesh_get(m, 'cvid'), cv_out);
mfu2 = gfMeshFem('partial', mfu, dof_out, cv_in);

%Elastic model 

md=gf_model('real');
gf_model_set(md,'add fem variable', 'u1', mfu1);
gf_model_set(md,'add fem variable', 'u2', mfu2);
gf_model_set(md,'add initialized fem data', 'd1', mf_ls1, ULS1);
gf_model_set(md,'add initialized fem data', 'd2', mf_ls2, ULS2);
gf_model_set(md,'add initialized data', 'gamma0', gamma0);


gf_model_set(md, 'add initialized data', 'friction_coeff',[f_coeff]);
clambda = 1;           % Lame coefficient
cmu = 1;               % Lame coefficient
gf_model_set(md, 'add initialized data', 'cmu', [cmu]);
gf_model_set(md, 'add initialized data', 'clambda', [clambda]);
gf_model_set(md, 'add isotropic linearized elasticity brick', mim1, 'u1','clambda', 'cmu');
gf_model_set(md, 'add isotropic linearized elasticity brick', mim2, 'u2','clambda', 'cmu');

if (N==2)
    gf_model_set(md, 'add initialized data', 'Fdata', [0 vertical_force]);
else
    gf_model_set(md, 'add initialized data', 'Fdata', [0 0 vertical_force]);
end

gf_model_set(md, 'add source term brick', mim1, 'u1', 'Fdata');

if (N==2)
    Ddata = zeros(1, 2);
else
    Ddata = zeros(1, 3);
end

gf_model_set(md, 'add initialized data', 'Ddata', Ddata);
gf_model_set(md, 'add Dirichlet condition with simplification', 'u2', GAMMAD, 'Ddata'); 

if (N==2)
    cpoints = [0, 0,   0, 0.1]; % constrained points for 2d
    cunitv  = [1, 0,  1, 0];    % corresponding constrained directions for 2d, better with [0, 0.1]
else
    cpoints = [0, 0, 0,    0, 0, 0,   0, 0, 0.1]; % constrained points for 3d
    cunitv  = [1, 0, 0,   0, 1, 0,   0, 1, 0];    % corresponding constrained directions for 3d, better with [0, 0.1]
end

gf_model_set(md, 'add initialized data', 'cpoints', cpoints);
gf_model_set(md, 'add initialized data', 'cunitv', cunitv);
gf_model_set(md, 'add pointwise constraints with multipliers', 'u1', 'cpoints', 'cunitv');


gf_model_set(md, 'add initialized data', 'penalty_param1', [penalty_parameter]);
indmass = gf_model_set(md, 'add mass brick', mim1, 'u1', 'penalty_param1');

% gf_model_set(md, 'add initialized data', 'penalty_param2', [penalty_parameter]);
% indmass = gf_model_set(md, 'add mass brick', mim2, 'u2', 'penalty_param2');

gf_model_set(md,'add Nitsche fictitious domain contact brick', mim_bound, 'u1', 'u2', 'd1', 'd2', 'gamma0', theta, 'friction_coeff'); 

disp('solve');

% niter= 20;
% gf_model_get(md, 'test tangent matrix term', 'u1', 'u2', 1e-6, niter, 10.0);
% gf_model_get(md, 'test tangent matrix', 1e-6, niter, 10);
% gf_model_get(md, 'test tangent matrix', 1e-6, 20, 10);

niter= 100;
gf_model_get(md, 'solve', 'max_res', 1E-9, 'max_iter', niter, 'noisy');

U1 = gf_model_get(md, 'variable', 'u1');  UU1 = gf_model_get(md, 'variable', 'u1');
VM1 = gf_model_get(md, 'compute_isotropic_linearized_Von_Mises_or_Tresca', ...
                          'u1', 'clambda', 'cmu', mfvm);
U2 = gf_model_get(md, 'variable', 'u2');  UU2 = gf_model_get(md, 'variable', 'u2');
VM2 = gf_model_get(md, 'compute_isotropic_linearized_Von_Mises_or_Tresca', ...
                          'u2', 'clambda', 'cmu', mfvm);

% plot figure

if (ref_sol == 0)
    if (N==2)
        sl1=gf_slice({'isovalues', -1, mf_ls1, ULS1, 0}, m, 5);
        P1=gf_slice_get(sl1,'pts'); dP1=gf_compute(mfu1,U1,'interpolate on',sl1);
        gf_slice_set(sl1, 'pts', P1 + dP1);
        VMsl1=gf_compute(mfvm,VM1,'interpolate on',sl1);
        sl2=gf_slice({'isovalues', -1, mf_ls2, ULS2, 0}, m, 5);
        P2=gf_slice_get(sl2,'pts'); dP2=gf_compute(mfu2,U2,'interpolate on',sl2);
        gf_slice_set(sl2, 'pts', P2+dP2);
        VMsl2=gf_compute(mfvm,VM2,'interpolate on',sl2);
        gf_plot_slice(sl1,'mesh','off','mesh_slice_edges','off','data',VMsl1);
        hold on;
        gf_plot_slice(sl2,'mesh','off','mesh_slice_edges','off','data',VMsl2);
        hold off;   
    else
        sl1=gf_slice({'boundary',{'intersection',{'ball',-1,[0;0;0],R},{'planar',1,[0;0;0],[1;0;0]}}}, m, 5);
        sl2=gf_slice({'boundary',{'intersection',{'planar',-1,[0;0;zc],[0;0;1]},{'planar',1,[0;0;0],[1;0;0]}}}, m, 5); 
        P1=gf_slice_get(sl1,'pts');P2=gf_slice_get(sl2,'pts');
        dP1=gf_compute(mfu1,U1,'interpolate on',sl1);
        dP2=gf_compute(mfu2,U2,'interpolate on',sl2);
        gf_slice_set(sl1, 'pts', P1+dP1);
        gf_slice_set(sl2, 'pts', P2+dP2);           
        VMsl1=gf_compute(mfvm,VM1,'interpolate on',sl1);
        VMsl2=gf_compute(mfvm,VM2,'interpolate on',sl2);
        set(gcf,'renderer','zbuffer');
        h=gf_plot_slice(sl1,'mesh','off','mesh_faces','on','mesh_slice_edges','on','data',VMsl1);
        hold on;
        h=gf_plot_slice(sl2,'mesh','off','mesh_slice_edges','off','data',VMsl2);
        hold off;
        view(-55,10); axis on; camlight('headlight'); %gf_colormap('tank');
        xlabel('x'); ylabel('y'); zlabel('z');
        %title('3D');       
        
    end
end;  


%plot false fictious domain

%         m_fict=gf_mesh('regular simplices', -.5:(1/10):.5, -.5:(1/10):.5);
%         hold on; gf_plot_mesh(m_fict); %plot de bord avec condition de type Dirichlet
%         hold off;


        map(1,:)=[0 200 255]; % bleu foncé
        map(2,:)=[0 255 255];
        map(3,:)=[128 255 128];
        map(4,:)=[255 255 0];
        map(5,:)=[255 128 0];
        map(6,:)=[255 0 0];
        colormap(map./255)

% save the reference solution if res_sol= 0 and else errors in L2 and H1  
% Discrétisation de réf N > n/4 

if (ref_sol == 0)
    gf_mesh_fem_get(mfu, 'save', 'sol_ref_mesh_fem','with_mesh');
    save sol_de_reference1 UU1;
    save sol_de_reference2 UU2;
    dls = gf_levelset_get(ls1, 'degree');
    save degree_levelset dls;
else
    meshref = gf_mesh('load', 'sol_ref_mesh_fem');
  
    % Reconstruction of mfuref, mfu1ref, mfu2ref, min1ref, min2ref
  
    dlsref = load('degree_levelset', 'dls');
    ls1ref=gf_levelset(meshref, dlsref.dls);
    ls2ref=gf_levelset(meshref, dlsref.dls);
    mf_ls1ref=gfObject(gf_levelset_get(ls1ref, 'mf'));
    mf_ls2ref=gfObject(gf_levelset_get(ls2ref, 'mf'));
    mfuref=gfMeshFem(meshref,N);
    if(N==2)
        set(mfuref, 'fem', gf_fem('FEM_PK(2,2)'));
    else
        set(mfuref, 'fem', gf_fem('FEM_PK(3,2)'));
    end
    mls1ref=gfMeshLevelSet(meshref);
    mls2ref=gfMeshLevelSet(meshref);

    P=get(mf_ls1ref, 'basic dof nodes');
    if(N==2)
        x = P(1,:); y = P(2,:);
        ULS1ref=1000*ones(1,numel(x));
        ULS1ref = min(ULS1ref, sqrt(x.^2 + y.^2) - R);
    else
        x = P(1,:); y = P(2,:); z = P(3,:);
        ULS1ref=1000*ones(1,numel(x));
        ULS1ref = min(ULS1ref, sqrt(x.^2 + y.^2 + z.^2) - R);
    end
    gf_levelset_set(ls1ref, 'values', ULS1ref);

    P=get(mf_ls2ref, 'basic dof nodes');
    if(N==2)
        x = P(1,:); y = P(2,:);
        ULS2ref=1000*ones(1,numel(x));
        yc = -0.25; xc=0; 
        ULS2ref=min(ULS2ref,y-yc);
    else
        x = P(1,:); y = P(2,:); z = P(3,:);
        ULS2ref=1000*ones(1,numel(x));
        zc = -0.25; xc=0; 
        ULS2ref=min(ULS2ref,z-zc);
    end
    gf_levelset_set(ls2ref, 'values', ULS2ref); 

    set(mls1ref, 'add', ls1ref);
    set(mls1ref, 'adapt');

    set(mls2ref, 'add', ls2ref);
    set(mls2ref, 'adapt');
    if(N==2)
        mim1ref = gfMeshIm('levelset', mls1ref, 'inside', gf_integ('IM_TRIANGLE(5)')); 
        mim2ref = gfMeshIm('levelset', mls2ref, 'inside', gf_integ('IM_TRIANGLE(5)')); 
    else
        mim1ref = gfMeshIm('levelset', mls1ref, 'inside', gf_integ('IM_TETRAHEDRON(5)')); 
        mim2ref = gfMeshIm('levelset', mls2ref, 'inside', gf_integ('IM_TETRAHEDRON(5)')); 
    end
    set(mim1ref, 'integ', 4);
    set(mim2ref, 'integ', 4);


    dof_out = get(mfuref, 'dof from im', mim1ref);
    cv_out = get(mim1ref, 'convex_index');
    cv_in = setdiff(gf_mesh_get(meshref, 'cvid'), cv_out);
    mfu1ref = gfMeshFem('partial', mfuref, dof_out, cv_in);

    dof_out = get(mfuref, 'dof from im', mim2ref);
    cv_out = get(mim2ref, 'convex_index');
    cv_in = setdiff(gf_mesh_get(meshref, 'cvid'), cv_out);
    mfu2ref = gfMeshFem('partial', mfuref, dof_out, cv_in);

    U1ref = load('sol_de_reference1', 'UU1');
    U2ref = load('sol_de_reference2', 'UU2');

    bB1 = gf_mesh_fem_get(mfu1, 'extension matrix');
    U1e = gf_compute(mfu, U1*bB1', 'interpolate on', mfu1ref); 
    bB2 = gf_mesh_fem_get(mfu2, 'extension matrix');
    U2e = gf_compute(mfu, U2*bB2', 'interpolate on', mfu2ref);
    n_tot1 = gf_compute(mfu1ref, U1e-U1ref.UU1, 'L2 norm', mim1ref);
    n_tot2 = gf_compute(mfu2ref, U2e-U2ref.UU2, 'L2 norm', mim2ref);
    n_ref1 = gf_compute(mfu1ref, U1ref.UU1, 'L2 norm',  mim1ref);
    n_ref2 = gf_compute(mfu2ref, U2ref.UU2, 'L2 norm',  mim2ref);
    m_tot1 = gf_compute(mfu1ref, U1e-U1ref.UU1, 'H1 norm', mim1ref);
    m_tot2 = gf_compute(mfu2ref, U2e-U2ref.UU2, 'H1 norm', mim2ref);
    m_ref1 = gf_compute(mfu1ref, U1ref.UU1, 'H1 norm',  mim1ref);
    m_ref2 = gf_compute(mfu2ref, U2ref.UU2, 'H1 norm',  mim2ref);
    n1 = 100*n_tot1/n_ref1; 
    n2 = 100*n_tot2/n_ref2;
    m1 = 100*m_tot1/m_ref1;
    m2 = 100*m_tot2/m_ref2;
    %nddl(zz)= gf_model_get(md,'nbdof');
    Y11(yy,zz,xx)=n1;
    Y12(yy,zz,xx)=n2;
    Y21(yy,zz,xx)=m1;
    Y22(yy,zz,xx)=m2;
  end
end
end
end

if (ref_sol == 1 ) % Curve of error depending of h
    Y11(1,:,1)
    Y12(1,:,1)
    Y21(1,:,1)
    Y22(1,:,1)
    X=1./nxy % [1/10 1/16 1/22 1/28 1/34 1/40];

   
    figure(1);
    msize= size(X,2);
    loglog(X,Y11(1,:,1),'o-k', 'linewidth', 2, 'MarkerSize', 15 )
    hold on;
    loglog(X,Y12(1,:,1),'+--k', 'linewidth', 2, 'MarkerSize', 15);
    hold off;
    P1 = polyfit(log(X),log(Y11(1,:,1)),1); % the first and second are too bad;
    P2 = polyfit(log(X),log(Y12(1,:,1)),1);
    legend(strcat('norm on Omega 1  (slope=',num2str(P1(1)), ')'), ...
           strcat('norm on Omega 2 (slope=',num2str(P2(1)), ')'), ...
           'Location', 'NorthWest');
    grid on;
    axesobj = findobj('type', 'axes');
    set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
    set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
    set(axesobj, 'linewidth', 4);
    xlabel('h');
    ylabel('L^2 relative error (in %)');
    set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'}) 
    

    figure(2);
 
    loglog(X,Y21(1,:,1),'o-k', 'linewidth', 2, 'MarkerSize', 15 )
    hold on;
    loglog(X,Y22(1,:,1),'+--k', 'linewidth', 2, 'MarkerSize', 15);
    hold off;
    P3 = polyfit(log(X),log(Y21(1,:,1)),1);
    P4 = polyfit(log(X),log(Y22(1,:,1)),1);
    legend(strcat('norm on Omega 1  (slope=',num2str(P3(1)), ')'), ...
           strcat('norm on Omega 2 (slope=',num2str(P4(1)), ')'), ...
           'Location', 'NorthWest');
    grid on;
    axesobj = findobj('type', 'axes');
    set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
    set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
    set(axesobj, 'linewidth', 4);
    xlabel('h');
    ylabel('H^1 relative error (in %)');
    set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'}) 
theta
gamma0
N
       
end

if (ref_sol == 2 )  % Curve of error depending of gamma0
    
    % method = [0 1 -1];
    
    Y11(:,1,:)
    Y12(:,1,:)
    Y21(:,1,:)
    Y22(:,1,:)
    X = gamma 

   
    
    figure(1);
    

    loglog(X,Y11(:,1,1)','o-k', 'linewidth', 2, 'MarkerSize', 15 )
    hold on;
    loglog(X,Y11(:,1,2)','+-k', 'linewidth', 2, 'MarkerSize', 15 );
    loglog(X,Y11(:,1,3)','x-k', 'linewidth', 2, 'MarkerSize', 15 );
    hold off;
        
    P1 = polyfit(log(X),log(Y11(:,1,1)'),1); % the first and second are too bad;
    P2 = polyfit(log(X),log(Y11(:,1,2)'),1);
    P3 = polyfit(log(X),log(Y11(:,1,3)'),1);
    legend(strcat('norm for theta = 0 '), ...
           strcat('norm for theta = 1 '), ...
           strcat('norm for theta = -1'), ...
           'Location', 'NorthWest');
    grid on;
    axesobj = findobj('type', 'axes');
    set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
    set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
    set(axesobj, 'linewidth', 4);
    xlabel('gamma0');
    ylabel('L^2(Omega 1) relative error (in %)');
    % set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'})  
    
    
    figure(2);
    

    loglog(X,Y12(:,1,1)','o-k', 'linewidth', 2, 'MarkerSize', 15 )
    hold on;
    loglog(X,Y12(:,1,2)','+-k', 'linewidth', 2, 'MarkerSize', 15 );
    loglog(X,Y12(:,1,3)','x-k', 'linewidth', 2, 'MarkerSize', 15 );
    hold off;
        
    P1 = polyfit(log(X),log(Y12(:,1,1)'),1); % the first and second are too bad;
    P2 = polyfit(log(X),log(Y12(:,1,2)'),1);
    P3 = polyfit(log(X),log(Y12(:,1,3)'),1);
    legend(strcat('norm for theta = 0 '), ...
           strcat('norm for theta = 1 '), ...
           strcat('norm for theta = -1'), ...
           'Location', 'NorthWest');
    grid on;
    axesobj = findobj('type', 'axes');
    set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
    set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
    set(axesobj, 'linewidth', 4);
    xlabel('gamma0');
    ylabel('L^2(Omega 2) relative error (in %)');
    % set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'}) 
   
    
    
     figure(3);
    

    loglog(X,Y21(:,1,1)','o-k', 'linewidth', 2, 'MarkerSize', 15 )
    hold on;
    loglog(X,Y21(:,1,2)','+-k', 'linewidth', 2, 'MarkerSize', 15 );
    loglog(X,Y21(:,1,3)','x-k', 'linewidth', 2, 'MarkerSize', 15 );
    hold off;
        
    P1 = polyfit(log(X),log(Y21(:,1,1)'),1); % the first and second are too bad;
    P2 = polyfit(log(X),log(Y21(:,1,2)'),1);
    P3 = polyfit(log(X),log(Y21(:,1,3)'),1);
    legend(strcat('norm for theta = 0 '), ...
           strcat('norm for theta = 1 '), ...
           strcat('norm for theta = -1'), ...
           'Location', 'NorthWest');
    grid on;
    axesobj = findobj('type', 'axes');
    set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
    set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
    set(axesobj, 'linewidth', 4);
    xlabel('gamma0');
    ylabel('H^1(Omega 1) relative error (in %)');
    % set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'}) 

    
    figure(4);
    

    loglog(X,Y22(:,1,1),'o-k', 'linewidth', 2, 'MarkerSize', 15 )
    hold on;
    loglog(X,Y22(:,1,2),'+-k', 'linewidth', 2, 'MarkerSize', 15 );
    loglog(X,Y22(:,1,3),'x-k', 'linewidth', 2, 'MarkerSize', 15 );
    hold off;
        
    P1 = polyfit(log(X),log(Y22(:,1,1)'),1); % the first and second are too bad;
    P2 = polyfit(log(X),log(Y22(:,1,2)'),1);
    P3 = polyfit(log(X),log(Y22(:,1,3)'),1);
    legend(strcat('norm for theta = 0 '), ...
           strcat('norm for theta = 1 '), ...
           strcat('norm for theta = -1'), ...
           'Location', 'NorthWest');
    grid on;
    axesobj = findobj('type', 'axes');
    set(axesobj, 'fontname', 'times'); set(axesobj, 'fontunits', 'points');
    set(axesobj, 'fontsize', 18); set(axesobj, 'fontweight', 'bold');
    set(axesobj, 'linewidth', 4);
    xlabel('gamma0');
    ylabel('H^1(Omega 2) relative error (in %)');
    % set(gca,'XTickLabel',{'0.01';'0.1';'1';'...'}) 
   
end