1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
% Copyright (C) 2011-2016 Tomas Ligursky, Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
%
% Simple example of the bifurcation problem: -Delta(u) + u = lambda * exp(u)
%
% This program is used to check that matlab-getfem is working. This is also
% a good example of use of GetFEM++.
%
gf_workspace('clear all');
gf_util('trace level', 1);
gf_util('warning level', 3);
% continuation data
datapath = 'data/';
% If the file name bp_char is non-empty, the continuation will be started
% from the bifurcation point and the tangent with the index ind_tangent
% saved there, direction of that tangent will be determined by direction.
% Otherwise, the continuation will be initialised according to direction and
% lambda0.
bp_char = '';
%bp_char = 'continuation_step_62_bp.mat';
ind_tangent = 2;
direction = 1;
lambda0 = 0;
nbstep = 80;
h_init = 2e-2;
h_max = 2e-1;
h_min = 2e-5;
mincos = 0.997;
noisy = 'noisy';
with_dirichlet = false;
% create a simple cartesian mesh
m = gf_mesh('cartesian', [0:.1:1]);
% create a mesh_fem for a field of dimension 1 (i.e. a scalar field)
mf = gf_mesh_fem(m,1);
% assign the P1 fem to all convexes of the mesh_fem,
gf_mesh_fem_set(mf, 'classical fem', 1);
% integration which will be used
mim = gf_mesh_im(m, 4);
% detect the border of the mesh
border = gf_mesh_get(m,'outer faces');
% mark it as boundary #1
gf_mesh_set(m, 'boundary', 1, border);
% define the model
md = gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mf);
gf_model_set(md, 'add Laplacian brick', mim, 'u');
gf_model_set(md, 'add data', 'lambda', 1);
gf_model_set(md, 'add nonlinear generic assembly brick', mim, ...
'(u-lambda*exp(u))*Test_u');
if (with_dirichlet)
gf_model_set(md, 'add Dirichlet condition with multipliers', ...
mim, 'u', mf, 1);
end;
% initialise the continuation
scfac = 1 / gf_mesh_fem_get(mf, 'nbdof');
S = gf_cont_struct(md, 'lambda', scfac, 'h_init', h_init, 'h_max', h_max,...
'h_min', h_min, 'min_cos', mincos, noisy,...
'singularities', 2);
if (bp_char)
load([datapath bp_char]);
U = U_bp; lambda = lambda_bp;
T_U = direction * T_U_bp(:, ind_tangent);
T_lambda = direction * T_lambda_bp(ind_tangent);
h = gf_cont_struct_get(S, 'init step size');
else
lambda = lambda0;
gf_model_set(md, 'variable', 'lambda', [lambda]);
if (noisy) disp('starting computing an initial point'); end
gf_model_get(md, 'solve', noisy, 'max iter', 100);
U = gf_model_get(md, 'variable', 'u');
[T_U, T_lambda, h] = ...
gf_cont_struct_get(S, 'init Moore-Penrose continuation', ...
U, lambda, direction);
end
U_hist = zeros(1, nbstep + 1); lambda_hist = zeros(1, nbstep + 1);
U_hist(1) = U(1); lambda_hist(1) = lambda;
figure(1);
subplot(2,1,1);
plot(lambda_hist(1), U_hist(1), 'k.');
xlabel('lambda'); ylabel('U(1)');
if (with_dirichlet) axis([0 4 0 15]); else axis([0 0.4 0 15]); end
subplot(2,1,2)
gf_plot_1D(mf, U, 'style', 'k.-');
if (with_dirichlet) axis([0 1 0 15]); else axis([0 1 0 15]); end
xlabel('x'); ylabel('u');
pause(1);
sing_out = {};
% continue from the initial point
for step = 1:nbstep
disp(sprintf('\nbeginning of step %d', step));
[U, lambda, T_U, T_lambda, h, h0, sing_label] = ...
gf_cont_struct_get(S, 'Moore-Penrose continuation', ...
U, lambda, T_U, T_lambda, h);
% gf_model_get(md, 'test tangent matrix', 1E-8, 20, 0.0001);
if (h ==0) return
elseif (sing_label)
if (strcmp(sing_label, 'limit point'))
s = ['step ' sprintf('%d', step) ': limit point' ];
elseif (strcmp(sing_label, 'smooth bifurcation point'))
[U_bp, lambda_bp, T_U_bp, T_lambda_bp]...
= gf_cont_struct_get(S, 'sing_data');
% save([datapath 'continuation_step_' sprintf('%d', step) '_bp.mat'], ...
% 'U_bp', 'lambda_bp', 'T_U_bp', 'T_lambda_bp');
s = ['step ' sprintf('%d', step) ': smooth bifurcation point, '...
sprintf('%d', size(T_U_bp, 2)) ' branch(es) located'];
end
sing_out(size(sing_out, 1)+1,1) = {s};
end
U_hist(step+1) = U(1); lambda_hist(step+1) = lambda;
subplot(2,1,1);
plot(lambda_hist(1:step+1), U_hist(1:step+1), 'k-');
hold on;
plot(lambda_hist(1:step), U_hist(1:step), 'ko');
plot(lambda_hist(step+1), U_hist(step+1), 'k.');
hold off;
if (with_dirichlet) axis([0 4 0 15]); else axis([0 0.4 0 15]); end
xlabel('lambda'); ylabel('U(1)');
subplot(2,1,2)
gf_plot_1D(mf, U, 'style', 'k.-');
if (with_dirichlet) axis([0 1 0 15]); else axis([0 1 0 15]); end
xlabel('x'); ylabel('u');
pause(0.25);
disp(sprintf('end of step %d / %d', step, nbstep));
end
nsing = size(sing_out, 1);
if (nsing)
disp('')
disp('------------------------------')
disp(' Detected singular points ')
disp('------------------------------')
for i = 1:nsing
disp(sing_out(i,:))
end
end
% gf_plot(mf,U,'mesh','on','contour',.01:.01:.1);
% colorbar; title('computed solution');
|