1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
% Copyright (C) 2009-2016 Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
%
% The transport equation into the unit square (rotating cavity)
%
% trace on;
gf_workspace('clear all');
K0 = 2; % degree for u
K1 = 2; % degree for v
NX = 10;
scheme = 1; % 0 = Implicit Euler
% 1 = midpoint
%m = gf_mesh('cartesian', 0:1/NX:1, 0:1/NX:1);
m = gf_mesh('triangles grid', 0:1/NX:1, 0:1/NX:1);
border = gf_mesh_get(m,'outer faces');
% normals = gf_mesh_get(m, 'normal of faces', border);
% dirichlet_boundary1=border(:,find(normals(2, :) < -0.5));
% dirichlet_boundary2=border(:,find(normals(1, :) < -0.5));
dirichlet_boundary = border;
GAMMAD = 1;
gf_mesh_set(m, 'region', GAMMAD, dirichlet_boundary);
% gf_plot_mesh(m, 'regions', [GAMMAD]); % the boundary edges appears in red
% pause;
%m=gf_mesh('import','structured','GT="GT_QK(2,1)";SIZES=[1,1];NOISED=1;NSUBDIV=[1,1];')
mf_u = gf_mesh_fem(m,1);
mf_v = gf_mesh_fem(m,1);
mf_d = gf_mesh_fem(m,2);
gf_mesh_fem_set(mf_u,'fem',gf_fem(sprintf('FEM_PK(2,%d)', K0)));
gf_mesh_fem_set(mf_v,'fem',gf_fem(sprintf('FEM_PK(2,%d)', K1)));
gf_mesh_fem_set(mf_d,'fem',gf_fem(sprintf('FEM_PK(2,%d)', K0)));
nbdofu = gf_mesh_fem_get(mf_u, 'nbdof');
nbdofv = gf_mesh_fem_get(mf_v, 'nbdof');
F = (gf_mesh_fem_get(mf_d, 'eval', {'0.5-y', 'x-0.5'}))';
% Integration which will be used
% mim = gf_mesh_im(m, gf_integ('IM_GAUSS_PARALLELEPIPED(2,4)'));
mim = gf_mesh_im(m, gf_integ('IM_TRIANGLE(6)'));
% Matrices
K = gf_asm('volumic', 'a=data(#2); M(#1,#1)+=comp(Grad(#1).Base(#1).vBase(#2))(:,i,:,j,i).a(j)', mim, mf_u, mf_d, F);
C = gf_asm('mass matrix', mim, mf_v);
B = gf_asm('mass matrix', mim, mf_v, mf_u);
dirichlet_dof = gf_mesh_fem_get(mf_u, 'dof on region', GAMMAD);
nbd = size(dirichlet_dof, 2);
BD = sparse(nbd, nbdofu);
for i = 1:nbd
BD(i, dirichlet_dof(i)) = 1;
end
% Initial data
U0 = (gf_mesh_fem_get(mf_u, 'eval', {'exp(-100*((x-0.5).^2+(y-0.25).^2))'}))';
U00 = U0;
if (scheme == 1)
V0 = -((B') \ (K' * U0));
end
% Time steps
NT = 200;
dt = 2*pi/NT;
if (scheme == 0)
C2 = C * (-dt);
elseif (scheme == 1)
C2 = C * (-dt)/2;
end
M = [K' B' BD'; B C2 sparse(nbdofv, nbd); BD sparse(nbd, nbdofv) sparse(nbd, nbd)];
ndraw = 10;
idraw = 10;
for t = 0:dt:2*pi
if ((ndraw == idraw) || (t >= 2*pi-1e-8))
figure(1);
gf_plot(mf_u , U0', 'mesh', 'on', 'contour', .1:.1:2);
caxis([0 1]);
colorbar;
pause(0.1);
idraw = 0;
end
idraw = idraw + 1;
if (scheme == 0)
X0 = [zeros(nbdofu,1); (B*U0); zeros(nbd,1);];
elseif (scheme == 1)
X0 = [(-B'*V0-K'*U0); (B*U0+(C*V0)*dt/2); zeros(nbd,1);];
end
X1 = M\X0;
U1 = X1(1:nbdofu);
V1 = X1((nbdofu+1):(nbdofu+nbdofv));
U0 = U1; V0 = V1;
end
figure(2);
gf_plot(mf_u , U00', 'mesh', 'on', 'contour', .1:.1:2);
caxis([0 1]);
colorbar;
|