File: demo_crack.m

package info (click to toggle)
getfem%2B%2B 5.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 32,668 kB
  • ctags: 20,930
  • sloc: cpp: 110,660; ansic: 72,312; python: 6,064; sh: 3,608; perl: 1,710; makefile: 1,343
file content (176 lines) | stat: -rw-r--r-- 7,489 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
% Copyright (C) 2009-2016 Luis Saavedra, Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
% under  the  terms  of the  GNU  Lesser General Public License as published
% by  the  Free Software Foundation;  either version 3 of the License,  or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program  is  distributed  in  the  hope  that it will be useful,  but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You  should  have received a copy of the GNU Lesser General Public License
% along  with  this program;  if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
%
%%%  Linear Elastostatic problem with a crack. Use of XFem.
%
%  This program is used to check that matlab-getfem is working. This is
%  also a good example of use of GetFEM++.
%
%%%

variant = 4;
% variant : 1 : a single crack with cutoff enrichement
%           2 : a single crack with a fixed size area Xfem enrichment
%           3 : a supplementary crossing  crack with a fixed size area
%               Xfem enrichment
%           4 : variant 3 with the second crack closed by a penalisation of
%               the jump (example of use of xfem_plus and xfem_minus).
%           5 : variant 3 with the first crack closed by a penalisation of
%               the jump (example of use of xfem_plus and xfem_minus).
%           6 : variant 3 with the two cracks closed by a penalisation of
%               the jump (example of use of xfem_plus and xfem_minus).


gf_workspace('clear all');

% Parameters
nx         = 20;
DIRICHLET  = 101;
Lambda     = 1.25e10;   % Lame coefficient
Mu         = 1.875e10;  % Lame coefficient

% Mesh definition:
m = gf_mesh('regular_simplices', -0.5:1.0/nx:0.5+1.0/nx, -0.5:1.0/nx:0.5+1.0/nx);
% m = gf_mesh('import','gmsh','quad.msh')

% Boundary set:
gf_mesh_set(m, 'region', DIRICHLET, gf_mesh_get(m,'outer_faces'));

% Global functions for asymptotic enrichment:
ck0 = gf_global_function('crack',0);
ck1 = gf_global_function('crack',1);
ck2 = gf_global_function('crack',2);
ck3 = gf_global_function('crack',3);
if (variant == 1) % Cutoff enrichement 
  coff = gf_global_function('cutoff',2,0.4,0.01,0.4);
  ckoff0 = gf_global_function('product', ck0, coff);
  ckoff1 = gf_global_function('product', ck1, coff);
  ckoff2 = gf_global_function('product', ck2, coff);
  ckoff3 = gf_global_function('product', ck3, coff);
end

% Levelset(s) definition
ls  = gf_levelset(m,1,'y','x');
mls = gf_mesh_levelset(m);
gf_mesh_levelset_set(mls,'add',ls);
if (variant > 2)
   ls2 =  gf_levelset(m,1,'x+0.125','abs(y)-0.375');
   gf_mesh_levelset_set(mls,'add',ls2);
end
gf_mesh_levelset_set(mls,'adapt');

% Basic mesh_fem without enrichment
mf_pre_u = gf_mesh_fem(m);
gf_mesh_fem_set(mf_pre_u,'fem',gf_fem('FEM_PK(2,1)'));

% Definition of the enriched finite element method
mfls_u = gf_mesh_fem('levelset',mls,mf_pre_u);

if (variant == 1) % Cutoff enrichement 
  mf_sing_u = gf_mesh_fem('global function',m,ls, {ckoff0,ckoff1,ckoff2,ckoff3},1);
  mf_u      = gf_mesh_fem('sum',mf_sing_u,mfls_u);
else
  mf_part_unity = gf_mesh_fem(m);
  gf_mesh_fem_set(mf_part_unity, 'classical fem', 1);
  DOFpts = gf_mesh_fem_get(mf_part_unity, 'basic dof nodes');
  % Search the dofs to be enriched with the asymptotic displacement.
  Idofs_center = find((DOFpts(1,:)).^2 + (DOFpts(2,:)).^2 <= (0.1)^2);
  mf_sing_u = gf_mesh_fem('global function',m,ls, {ck0,ck1,ck2,ck3}, 1);
  mf_xfem_sing = gf_mesh_fem('product', mf_part_unity, mf_sing_u);
  gf_mesh_fem_set( mf_xfem_sing, 'set enriched dofs', Idofs_center);
  if (variant > 2)
    Idofs_up = find((DOFpts(1,:)+0.125).^2 + (DOFpts(2,:)-0.375).^2 <= (0.1)^2);
    Idofs_down = find((DOFpts(1,:)+0.125).^2 + (DOFpts(2,:)+0.375).^2 <= (0.1)^2);
    mf_sing_u2 = gf_mesh_fem('global function',m,ls2, {ck0,ck1,ck2,ck3}, 1);
    mf_xfem_sing2 = gf_mesh_fem('product', mf_part_unity, mf_sing_u2);
    gf_mesh_fem_set(mf_xfem_sing2, 'set enriched dofs', [Idofs_up Idofs_down]);
  end
  
  if (variant == 2)
    mf_u = gf_mesh_fem('sum', mf_xfem_sing, mfls_u);
  else
    mf_u = gf_mesh_fem('sum', mf_xfem_sing, mf_xfem_sing2, mfls_u);
  end
end  

gf_mesh_fem_set(mf_u,'qdim',2);

% MeshIm definition:
mim = gf_mesh_im('levelset', mls, 'all', ...
		gf_integ('IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(6),3)'), ...
		gf_integ('IM_STRUCTURED_COMPOSITE(IM_GAUSS_PARALLELEPIPED(2,6),9)'), ...
		gf_integ('IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(6),5)'));

% Exact solution for a single crack:
mf_ue = gf_mesh_fem('global function',m,ls,{ck0,ck1,ck2,ck3});
A = 2+2*Mu/(Lambda+2*Mu);
B = -2*(Lambda+Mu)/(Lambda+2*Mu);
Ue = zeros(2,4);
Ue(1,1) =   0; Ue(2,1) = A-B; % sin(theta/2)
Ue(1,2) = A+B; Ue(2,2) = 0;   % cos(theta/2)
Ue(1,3) =  -B; Ue(2,3) = 0;   % sin(theta/2)*sin(theta)
Ue(1,4) =   0; Ue(2,4) = B;   % cos(theta/2)*cos(theta)
Ue = Ue / 2*pi;
Ue=reshape(Ue,1,8);

% Model definition:
md = gf_model('real');
gf_model_set(md,'add_fem_variable', 'u', mf_u);
% data
gf_model_set(md,'add_initialized_data','lambda', [Lambda]);
gf_model_set(md,'add_initialized_data','mu', [Mu]);
gf_model_set(md,'add_isotropic_linearized_elasticity_brick',mim,'u','lambda','mu');
gf_model_set(md,'add_initialized_fem_data','DirichletData', mf_ue, Ue);
gf_model_set(md,'add_Dirichlet_condition_with_penalization',mim,'u', 1e12, DIRICHLET, 'DirichletData');

if (variant == 5 || variant == 6) % Penalisation of the jump over the first crack
  mim_bound1 = gf_mesh_im('levelset', mls, 'boundary(a)', gf_integ('IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(6),3)'));
  % gf_asm('generic', mim_bound, 0, '1', -1) % length of the crack
  gf_model_set(md, 'add linear generic assembly brick', mim_bound1, '1e17*(Xfem_plus(u)-Xfem_minus(u)).(Xfem_plus(Test_u)-Xfem_minus(Test_u))');
end

if (variant == 4 || variant == 6) % Penalisation of the jump over the second crack
  mim_bound2 = gf_mesh_im('levelset', mls, 'boundary(b)', gf_integ('IM_STRUCTURED_COMPOSITE(IM_TRIANGLE(6),3)'));
  gf_model_set(md, 'add linear generic assembly brick', mim_bound2, '1e17*(Xfem_plus(u)-Xfem_minus(u)).(Xfem_plus(Test_u)-Xfem_minus(Test_u))');
end

% Assembly of the linear system and solve:
gf_model_get(md,'solve');
U = gf_model_get(md,'variable','u');

% Interpolation of the solution on a cut mesh for the drawing purpose
cut_mesh = gf_mesh_levelset_get(mls,'cut_mesh');
mfv = gf_mesh_fem(cut_mesh,2);
gf_mesh_fem_set(mfv,'classical_discontinuous_fem',2,0.001);
gf_mesh_fem_set(mf_ue,'qdim',2);

V  = gf_compute(mf_u,U,'interpolate_on',mfv);
Ve = gf_compute(mf_ue,Ue,'interpolate_on',mfv);

% Computation of the Von Mises stress
mfvm = gf_mesh_fem(cut_mesh);
gf_mesh_fem_set(mfvm,'classical_discontinuous_fem',2,0.001);
gf_model_set(md,'add initialized fem data', 'u_cut', mfv, V);
VM = gf_model_get(md,'compute_isotropic_linearized_Von_Mises_or_Tresca', 'u_cut', 'lambda', 'mu', mfvm);

% export to pos
gf_mesh_fem_get(mfv,'export_to_pos','crack.pos',V,'V',Ve,'Ve', mfvm, VM,'Von Mises');
disp('You can view the solution with (for example): gmsh crack.pos\n');

% drawing the solution
gf_plot(mfvm, VM, 'deformed_mesh', 'on', 'deformation_mf', mfv, 'deformation', V, 'deformation_scale', 0.10);
colorbar;