File: demo_dynamic_plasticity.m

package info (click to toggle)
getfem%2B%2B 5.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 32,668 kB
  • ctags: 20,930
  • sloc: cpp: 110,660; ansic: 72,312; python: 6,064; sh: 3,608; perl: 1,710; makefile: 1,343
file content (479 lines) | stat: -rw-r--r-- 16,488 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
% Copyright (C) 2010-2016 Yves Renard, Farshid Dabaghi.
%
% This file is a part of GetFEM++
%
% GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
% under  the  terms  of the  GNU  Lesser General Public License as published
% by  the  Free Software Foundation;  either version 3 of the License,  or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program  is  distributed  in  the  hope  that it will be useful,  but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You  should  have received a copy of the GNU Lesser General Public License
% along  with  this program;  if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.





% We compute a dynamic plasticity problem with a Von Mises criterion with or
% without kinematic hardening
% For convenience we consider an homogenous Dirichlet condition on the left
% of the domain and an easy computed Neumann Condition on the right



clear all;
gf_workspace('clear all');
clc;

with_hardening = 1;
bi_material = false;
test_tangent_matrix = 0;
do_plot = true;

% Initialize used data
LX = 100;
LY = 20;
NX = 50;
NY = 20;


% alpha is parametr of the generalized integration algorithms The
% The choice alpha = 1/2 yields the mid point method and alpha = 1 leads to
% backward Euler integration
Imlicit_Euler_method=0;    % set theta = 1
alpha_method = 0;
alpha = 1;                  %  alpha = 1/2 yields the mid point method
general_theta_method =1;    %  theta = 1/2 yields the Crank-Nicolson method

f = [15000 0]';



% transient part.
T = pi/4;
dt = 0.01;
theta= 0.5;






% Create the mesh
% m = gfMesh('triangles grid', [0:(LX/NX):LX], [0:(LY/NY):LY]);
m = gfMesh('import','structured',sprintf('GT="GT_PK(2,1)";SIZES=[%d,%d];NOISED=0;NSUBDIV=[%d,%d];', LX, LY, NX, NY));
N = gf_mesh_get(m, 'dim');
  
% Plotting
% gf_plot_mesh(m, 'vertices', 'on', 'convexes', 'on');
% return;

% Define used MeshIm
mim=gfMeshIm(m);  set(mim, 'integ', gfInteg('IM_TRIANGLE(6)')); % Gauss methods on triangles

% Define used MeshFem
mf_u=gfMeshFem(m,2); set(mf_u, 'fem',gfFem('FEM_PK(2,2)'));
mf_data=gfMeshFem(m); set(mf_data, 'fem', gfFem('FEM_PK_DISCONTINUOUS(2,0)'));
% mf_sigma=gfMeshFem(m,4); set(mf_sigma, 'fem',gfFem('FEM_PK_DISCONTINUOUS(2,1)'));
mf_sigma=gfMeshFem(m,4); set(mf_sigma, 'fem',gfFem('FEM_PK_DISCONTINUOUS(2,0)'));
mf_vm = gfMeshFem(m); set(mf_vm, 'fem', gfFem('FEM_PK_DISCONTINUOUS(2,1)'));

% Find the border of the domain
P=get(m, 'pts');
pidleft=find(abs(P(1,:))<1e-6); % Retrieve index of points which x near to 0
pidright=find(abs(P(1,:) - LX)<1e-6); % Retrieve index of points which x near to L
fleft =get(m,'faces from pid',pidleft); 
fright=get(m,'faces from pid',pidright);
set(m,'boundary',1,fleft); % for Dirichlet condition
set(m,'boundary',2,fright); % for Neumann condition

% Decomposed the mesh into 2 regions with different values of Lam?? coeff
if (bi_material) separation = LY/2; else separation = 0; end
pidtop    = find(P(2,:)>=separation-1E-6); % Retrieve index of points of the top part
pidbottom = find(P(2,:)<=separation+1E-6); % Retrieve index of points of the bottom part
cvidtop   = get(m, 'cvid from pid', pidtop);
cvidbottom= get(m, 'cvid from pid', pidbottom);
CVtop     = sort(get(mf_data, 'basic dof from cvid', cvidtop));
CVbottom  = sort(get(mf_data, 'basic dof from cvid', cvidbottom));

% Definition of Lame coeff
lambda(CVbottom,1) = 121150; % Steel
lambda(CVtop,1) = 84605; % Iron
mu(CVbottom,1) = 80769; %Steel
mu(CVtop,1) = 77839; % Iron
% Definition of plastic threshold
von_mises_threshold(CVbottom) = 7000;
von_mises_threshold(CVtop) = 8000;
rho = 0.1;
% Definition of hardening parameter
if (with_hardening)
  H = mu(1)/5;
else
  H = 0;
end

% Create the model
md = gfModel('real');

% Declare that u is the unknown of the system on mf_u
% 2 is the number of version of the data stored, for the time integration scheme 
set(md, 'add fem variable', 'u', mf_u);



% Time integration scheme and inertia term
if(alpha_method) 
 nbdofu = gf_mesh_fem_get(mf_u, 'nbdof');
 M = gf_asm('mass matrix', mim, mf_u);
 gf_model_set(md, 'add fem data', 'Previous_u', mf_u);
 set(md, 'add initialized data', 'rho', rho);
% % gf_model_set(md, 'add mass brick', mim, string varname[, string dataname_rho[, int region]]);
% gf_model_set(md, 'add mass brick', mim,'u' ,'rho');
 
else

gf_model_set(md, 'add theta method for second order', 'u',theta);
gf_model_set(md, 'set time step', dt);


set(md, 'add initialized data', 'rho', rho);
gf_model_set(md, 'add mass brick', mim, 'Dot2_u', 'rho');

end




% Declare that lambda is a data of the system on mf_data
set(md, 'add initialized fem data', 'lambda', mf_data, lambda);

% Declare that mu is a data of the system on mf_data
set(md, 'add initialized fem data', 'mu', mf_data, mu);

% Declare that von_mises_threshold is a data of the system on mf_data
set(md, 'add initialized fem data', 'von_mises_threshold', mf_data, von_mises_threshold);

N = gf_mesh_get(m, 'dim');
% gf_model_set(md, 'add fem data', 'Previous_u', mf_u);
mim_data = gf_mesh_im_data(mim, -1, [N, N]);
gf_model_set(md, 'add im data', 'sigma', mim_data);


 % Declare that alpha is a data of the system 
 
set(md, 'add initialized data', 'alpha', [alpha]);

set(md, 'add initialized data', 'H', [H]);

Is = 'Reshape(Id(meshdim*meshdim),meshdim,meshdim,meshdim,meshdim)';
IxI = 'Id(meshdim)@Id(meshdim)';
coeff_long = '((lambda)*(H))/((2*(mu)+(H))*(meshdim*(lambda)+2*(mu)+(H)))';
B_inv = sprintf('((2*(mu)/(2*(mu)+(H)))*(%s) + (%s)*(%s))', Is, coeff_long, IxI);
B = sprintf('((1+(H)/(2*(mu)))*(%s) - (((lambda)*(H))/(2*(mu)*(meshdim*(lambda)+2*(mu))))*(%s))', Is, IxI);
ApH = sprintf('((2*(mu)+(H))*(%s) + (lambda)*(%s))', Is, IxI);
Enp1 = '((Grad_u+Grad_u'')/2)';
En = '((Grad_Previous_u+Grad_Previous_u'')/2)';
 %expression de sigma for Implicit Euler method
 if(Imlicit_Euler_method)
  expr_sigma = strcat('(', B_inv, '*(Von_Mises_projection((-(H)*', Enp1, ')+(', ApH, '*(',Enp1,'-',En,')) + (', B, '*sigma), von_mises_threshold) + H*', Enp1, '))');
  
 end
 
if(alpha_method)
 %expression de sigma for generalized alpha algorithms
  expr_sigma = strcat('(', B_inv, '*(Von_Mises_projection((',B,'*(1-alpha)*sigma)+(-(H)*(((1-alpha)*',En,')+(alpha*', Enp1, ')))+(alpha*', ApH, '*(',Enp1,'-',En,')) + (alpha*', ...
    B, '*sigma), von_mises_threshold) + (H)*(((1-alpha)*',En,')+(alpha*', Enp1, '))))');
end

if(general_theta_method)
    
 %expression de sigma for generalized theta algorithms
 set(md, 'add initialized data', 'dt', [dt]);
 set(md, 'add initialized data', 'theta', [theta]);
 gf_model_set(md, 'add im data', 'Epn_t', mim_data);

 expr_sigma = strcat('(', B_inv, '*(Von_Mises_projection((-(H)*', Enp1, ')+(', ApH, '*(',Enp1,'-',En,')) + (', B, '*sigma)-(',ApH,'*dt*(1-theta)*Epn_t), von_mises_threshold) + H*', Enp1, '))');

end


gf_model_set(md, 'add nonlinear generic assembly brick', mim, strcat(expr_sigma, ':Grad_Test_u'));
% gf_model_set(md, 'add finite strain elasticity brick', mim, 'u', 'SaintVenant Kirchhoff', '[lambda; mu]');


% Add homogeneous Dirichlet condition to u on the left hand side of the domain
set(md, 'add Dirichlet condition with multipliers', mim, 'u', mf_u, 1);

% Add a source term to the system
set(md,'add initialized fem data', 'VolumicData', mf_data, get(mf_data, 'eval',{f(1,1)*sin(0);f(2,1)*sin(0)}));
set(md, 'add source term brick', mim, 'u', 'VolumicData', 2);





% interpolate the initial data
U0 = get(md, 'variable', 'u');
V0 = 0*U0;

if(general_theta_method)
    
 Ep0_t=  gf_model_get(md, 'variable', 'Epn_t');
 coeff1='-lambda/(2*mu*(meshdim*lambda+2*mu))';
 coeff2='1/(2*mu)';
 Ainv=sprintf('(%s)*(%s) + (%s)*(%s)', coeff1, IxI, coeff2, Is);
 Ep = sprintf('(Grad_u+Grad_u'')/2 - (%s)*sigma', Ainv);
 Ep0 = gf_model_get(md, 'interpolation', Ep, mim_data);
 
end

if(alpha_method)
gf_model_set(md, 'add explicit matrix', 'u', 'u',rho* M/(dt*dt*alpha));
ind_rhs = gf_model_set(md, 'add explicit rhs', 'u', zeros(nbdofu,1));
MV0=M*V0';
else
    
    
% Initial data.
gf_model_set(md, 'variable', 'Previous_u',  U0);
gf_model_set(md, 'variable', 'Previous_Dot_u',  V0);


% Initialisation of the acceleration 'Previous_Dot2_u'
gf_model_set(md, 'perform init time derivative', dt/20.);
gf_model_get(md, 'solve');

end





VM=zeros(1,get(mf_vm, 'nbdof'));
 step=1;
% Iterations
for t = 0:dt:T
  
   coeff = sin(16*t);
   disp(sprintf('step %d, coeff = %g', step , coeff)); 
   set(md, 'variable', 'VolumicData', get(mf_data, 'eval',{f(1,1)*coeff;f(2,1)*coeff}));  
  
 if(alpha_method)
    
      MU0=M*U0';
      LL = rho*(( 1/(dt*dt*alpha))*MU0+( 1/(dt*alpha))*MV0);
      gf_model_set(md, 'set private rhs', ind_rhs, LL);
      get(md, 'solve', 'noisy', 'lsearch', 'simplest',  'alpha min', 0.8, 'max_iter', 100, 'max_res', 1e-6);
      U = gf_model_get(md, 'variable', 'u');
      MV = ((M*U' - MU0)/dt -(1-alpha)*MV0)/alpha;

 end

  if(Imlicit_Euler_method)
       get(md, 'solve', 'noisy', 'lsearch', 'simplest',  'alpha min', 0.8, 'max_iter', 100, 'max_res', 1e-6);
       U = gf_model_get(md, 'variable', 'u');
       V = gf_model_get(md, 'variable', 'Dot_u'); 
  
  end

  if(general_theta_method)
     get(md, 'solve', 'noisy', 'lsearch', 'simplest',  'alpha min', 0.8, 'max_iter', 100, 'max_res', 1e-6); 
       U = gf_model_get(md, 'variable', 'u');
       V = gf_model_get(md, 'variable', 'Dot_u'); 
     
  end
  
      
  if (test_tangent_matrix)
      gf_model_get(md, 'test tangent matrix', 1E-8, 10, 0.000001);
  end;
    
  if (alpha_method)
      sigma_0 = gf_model_get(md, 'variable', 'sigma');
      sigma = gf_model_get(md, 'interpolation', expr_sigma, mim_data);
      U_0 = gf_model_get(md, 'variable', 'Previous_u');
      U_nalpha = alpha*U + (1-alpha)*U_0;
       
       
       
      M_vm = gf_asm('mass matrix', mim, mf_vm);
      L = gf_asm('generic', mim, 1, 'sqrt(3/2)*Norm(Deviator(sigma))*Test_vm', -1, 'sigma', 0, mim_data, sigma, 'vm', 1, mf_vm, zeros(gf_mesh_fem_get(mf_vm, 'nbdof'),1));
      VM = (M_vm \ L)';
      coeff1='-lambda/(2*mu*(meshdim*lambda+2*mu))';
      coeff2='1/(2*mu)';
      Ainv=sprintf('(%s)*(%s) + (%s)*(%s)', coeff1, IxI, coeff2, Is);
      Ep = sprintf('(Grad_u+Grad_u'')/2 - (%s)*sigma', Ainv);
      L = gf_asm('generic', mim, 1, sprintf('Norm(%s)*Test_vm', Ep), -1, 'sigma', 0, mim_data, sigma, 'u', 0, mf_u, U, 'vm', 1, mf_vm, zeros(gf_mesh_fem_get(mf_vm, 'nbdof'),1), 'mu', 0, mf_data, mu, 'lambda', 0, mf_data, lambda);
      plast = (M_vm \ L)';
      
      gf_model_set(md, 'variable', 'u', U_nalpha);
      Epsilon_u = gf_model_get(md, 'interpolation', '((Grad_u+Grad_u'')/2)', mim_data);
 
      nb_gauss_pt_per_element = size(sigma, 2) / (N*N*gf_mesh_get(m, 'nbcvs'));
      % ind_gauss_pt = 22500;
      ind_gauss_pt = nb_gauss_pt_per_element * 1100 - 1;
      ind_elt = floor(ind_gauss_pt / nb_gauss_pt_per_element);
       P = gf_mesh_get(m, 'pts from cvid', ind_elt);
      disp(sprintf('Point for the strain/stress graph (approximately): (%f,%f)', P(1,1), P(2,1)));

    if (size(sigma, 2) <= N*(ind_gauss_pt + 1))
      ind_gauss_pt = floor(3*size(sigma, 2) / (4*N*N));
    end
      sigma_fig(1,step)=sigma(N*N*ind_gauss_pt + 1);
      Epsilon_u_fig(1,step)=Epsilon_u(N*N*ind_gauss_pt + 1);
      sigma = (sigma - (1-alpha)*sigma_0)/alpha;
      gf_model_set(md, 'variable', 'sigma', sigma);
      gf_model_set(md, 'variable', 'Previous_u', U);
   end
   
  
  if(Imlicit_Euler_method)
    
    sigma = gf_model_get(md, 'interpolation', expr_sigma, mim_data);
    gf_model_set(md, 'variable', 'sigma', sigma);
    gf_model_set(md, 'variable', 'Previous_u', U);
    

      
    M_VM = gf_asm('mass matrix', mim, mf_vm);
    L = gf_asm('generic', mim, 1, 'sqrt(3/2)*Norm(Deviator(sigma))*Test_vm', -1, 'sigma', 0, mim_data, sigma, 'vm', 1, mf_vm, zeros(gf_mesh_fem_get(mf_vm, 'nbdof'),1));
    VM = (M_VM \ L)';
    coeff1='-lambda/(2*mu*(meshdim*lambda+2*mu))';
    coeff2='1/(2*mu)';
    Ainv=sprintf('(%s)*(%s) + (%s)*(%s)', coeff1, IxI, coeff2, Is);
    Ep = sprintf('(Grad_u+Grad_u'')/2 - (%s)*sigma', Ainv);
    L = gf_asm('generic', mim, 1, sprintf('Norm(%s)*Test_vm', Ep), -1, 'sigma', 0, mim_data, sigma, 'u', 0, mf_u, U, 'vm', 1, mf_vm, zeros(gf_mesh_fem_get(mf_vm, 'nbdof'),1), 'mu', 0, mf_data, mu, 'lambda', 0, mf_data, lambda);
    plast = (M_VM \ L)';
      
    Epsilon_u = gf_model_get(md, 'interpolation', '((Grad_u+Grad_u'')/2)', mim_data);
    nb_gauss_pt_per_element = size(sigma, 2) / (N*N*gf_mesh_get(m, 'nbcvs'));
    % ind_gauss_pt = 22500;
    ind_gauss_pt = nb_gauss_pt_per_element * 1100 - 1;
    ind_elt = floor(ind_gauss_pt / nb_gauss_pt_per_element);
    P = gf_mesh_get(m, 'pts from cvid', ind_elt);
    disp(sprintf('Point for the strain/stress graph (approximately): (%f,%f)', P(1,1), P(2,1)));

    if (size(sigma, 2) <= N*(ind_gauss_pt + 1))
      ind_gauss_pt = floor(3*size(sigma, 2) / (4*N*N));
    end
    sigma_fig(1,step)=sigma(N*N*ind_gauss_pt + 1);
    Epsilon_u_fig(1,step)=Epsilon_u(N*N*ind_gauss_pt + 1);
    
    
  end  
    
  if(general_theta_method) 
      
    sigma = gf_model_get(md, 'interpolation', expr_sigma, mim_data);
    gf_model_set(md, 'variable', 'sigma', sigma);
    gf_model_set(md, 'variable', 'Previous_u', U);
    
   
    
    M_VM = gf_asm('mass matrix', mim, mf_vm);
    L = gf_asm('generic', mim, 1, 'sqrt(3/2)*Norm(Deviator(sigma))*Test_vm', -1, 'sigma', 0, mim_data, sigma, 'vm', 1, mf_vm, zeros(gf_mesh_fem_get(mf_vm, 'nbdof'),1));
    VM = (M_VM \ L)';
    
    coeff1='-lambda/(2*mu*(meshdim*lambda+2*mu))';
    coeff2='1/(2*mu)';
    Ainv=sprintf('(%s)*(%s) + (%s)*(%s)', coeff1, IxI, coeff2, Is);
    Ep = sprintf('(Grad_u+Grad_u'')/2 - (%s)*sigma', Ainv);
    
    
    L = gf_asm('generic', mim, 1, sprintf('Norm(%s)*Test_vm', Ep), -1, 'sigma', 0, mim_data, sigma, 'u', 0, mf_u, U, 'vm', 1, mf_vm, zeros(gf_mesh_fem_get(mf_vm, 'nbdof'),1), 'mu', 0, mf_data, mu, 'lambda', 0, mf_data, lambda);
    plast = (M_VM \ L)';
      
    Epsilon_u = gf_model_get(md, 'interpolation', '((Grad_u+Grad_u'')/2)', mim_data);
    nb_gauss_pt_per_element = size(sigma, 2) / (N*N*gf_mesh_get(m, 'nbcvs'));
    % ind_gauss_pt = 22500;
    ind_gauss_pt = nb_gauss_pt_per_element * 1100 - 1;
    ind_elt = floor(ind_gauss_pt / nb_gauss_pt_per_element);
    P = gf_mesh_get(m, 'pts from cvid', ind_elt);
    disp(sprintf('Point for the strain/stress graph (approximately): (%f,%f)', P(1,1), P(2,1)));

    if (size(sigma, 2) <= N*(ind_gauss_pt + 1))
      ind_gauss_pt = floor(3*size(sigma, 2) / (4*N*N));
    end
    sigma_fig(1,step)=sigma(N*N*ind_gauss_pt + 1);
    Epsilon_u_fig(1,step)=Epsilon_u(N*N*ind_gauss_pt + 1);
    
    
    Ep1 = gf_model_get(md, 'interpolation', Ep, mim_data);
    Epn_t= (1/(dt*theta))*(Ep1-Ep0)-(((1-theta)/theta)*Ep0_t);
    gf_model_set(md, 'variable', 'Epn_t', Epn_t);
 
       
  end
  
  
       
    if (do_plot)
      figure(2)
      subplot(3,1,1);
      gf_plot(mf_vm,VM, 'deformation',U,'deformation_mf',mf_u,'refine', 4, 'deformation_scale',1, 'disp_options', 0); % 'deformed_mesh', 'on')
      colorbar;
      axis([-20 130 -20 40]);
      % caxis([0 10000]);
      n = t;
       title(['Von Mises criterion for t = ', num2str(t)]);
      subplot(3,1,2);
      gf_plot(mf_vm,plast, 'deformation',U,'deformation_mf',mf_u,'refine', 4, 'deformation_scale',1, 'disp_options', 0);  % 'deformed_mesh', 'on')
      colorbar;
      axis([-20 130 -20 40]);
      % caxis([0 10000]);
      n = t;
      title(['Plastification for t = ', num2str(t)]);
    
      
      subplot(3,1,3);
      plot(Epsilon_u_fig, sigma_fig,'r','LineWidth',2)
      xlabel('Strain');
      ylabel('Stress')
      axis([-0.3 0.3 -16500 16500 ]);
      title(sprintf('step %d / %d, coeff = %g', step,size([0:dt:T],2) , coeff));
      
      pause(0.1);
    end
    
       step= step+ 1;
     
    if(alpha_method)
         
       U0 = U;
       MV0 = MV;
 
    end
    
    if(Imlicit_Euler_method)   
        
        gf_model_set(md, 'shift variables for time integration');
    
    end
     
    
      if(general_theta_method) 
          
        gf_model_set(md, 'shift variables for time integration');   
        Ep0_t=Epn_t;
        Ep0=Ep1;
          
      end
     
     
end;