1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
% Copyright (C) 2005-2016 Julien Pommier.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
clear all;
% parameters
option = 2; % 1 = use Lame coefficients brick
% 2 = use plane strain approximation brick
% 3 = use plane stress approximation brick
d = 2; % dimension (cannot be changed for the moment)
E = 1; % Young's modulus
nu = 0.3; % Poisson ratio
cmu = E/(2*(1+nu)); % Lame coefficient
if (option == 3)
clambda = 2*cmu*nu/(1-2*nu); % Lame coefficient, 3D and plane strain
else
clambda = 2*cmu*nu/(1-nu); % Lame coefficient, plane stress
end
dirichlet_version = 2; % 1 = With multipliers, 2 = Nitsche's method
theta = 1; % Nitsche's method parameter theta
gamma0 = 0.001; % Nitsche's method parameter gamma0 (gamma = gamma0*h)
incompressible = false;% Test with incompressibility or not
NX = 30;
% trace on;
gf_workspace('clear all');
m = gf_mesh('cartesian',[0:1/NX:1],[0:1/NX:1]);
%m=gf_mesh('import','structured','GT="GT_QK(2,1)";SIZES=[1,1];NOISED=1;NSUBDIV=[1,1];')
% create a mesh_fem of for a field of dimension d (i.e. a vector field)
mf = gf_mesh_fem(m,d);
% assign the Q2 fem to all convexes of the mesh_fem,
gf_mesh_fem_set(mf, 'fem', gf_fem('FEM_QK(2,2)'));
if (incompressible)
mfp = gf_mesh_fem(m,1);
gf_mesh_fem_set(mfp, 'fem', gf_fem('FEM_QK(2,1)'));
end
mf_H = gf_mesh_fem(m,1);
gf_mesh_fem_set(mf_H, 'fem', gf_fem('FEM_QK(2,1)'));
mfdu=gf_mesh_fem(m,1); gf_mesh_fem_set(mfdu, 'fem', gf_fem('FEM_QK_DISCONTINUOUS(2,2)'));
% Integration which will be used
mim = gf_mesh_im(m, gf_integ('IM_GAUSS_PARALLELEPIPED(2,4)'));
%mim = gf_mesh_im(m, gf_integ('IM_STRUCTURED_COMPOSITE(IM_GAUSS_PARALLELEPIPED(2,5),4)'));
% detect the border of the mesh
border = gf_mesh_get(m,'outer faces');
% mark it as boundary #1
GAMMAD = 1;
gf_mesh_set(m, 'boundary', GAMMAD, border);
% gf_plot_mesh(m, 'regions', [1]); % the boundary edges appears in red
% pause(1);
% Polynomial exact solution
% Uexact = gf_mesh_fem_get(mf, 'eval', { '(x.^4).*(y.^2)', 'x.*y'});
% F = gf_mesh_fem_get(mf, 'eval', {sprintf('-(%g)*(12*(x.^2).*(y.^2)+1) - (%g)*(24*(x.^2).*(y.^2)+2*(x.^4)+1)', clambda, cmu), sprintf('-8*((%g)+(%g))*((x.^3).*y)', clambda, cmu)});
% Exact incompressible solution in terms of trigonometric functions
a = 8;
Uexact = gf_mesh_fem_get(mf, 'eval', { sprintf('sin((%g)*x)', a), sprintf('-(%g)*y.*cos((%g)*x)',a,a)});
F = gf_mesh_fem_get(mf, 'eval', {sprintf('(%g)*((%g)^2)*sin((%g)*x)', cmu, a, a), sprintf('-(%g)*((%g)^3)*y.*cos((%g)*x)', cmu, a, a)});
if (incompressible)
Pexact = 100*gf_mesh_fem_get(mfp, 'eval', {sprintf('sin((%g)*(x-y))', a)});
F = F + 100*gf_mesh_fem_get(mf, 'eval', {sprintf('(%g)*cos((%g)*(x-y))', a, a), sprintf('-(%g)*cos((%g)*(x-y))', a, a)});
end
md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mf);
if (option == 1)
gf_model_set(md, 'add initialized data', 'cmu', [cmu]);
gf_model_set(md, 'add initialized data', 'clambda', [clambda]);
% gf_model_set(md, 'add linear generic assembly brick', mim, ...
% '(clambda*Div_Test_u*Id(qdim(u)) +
% cmu*(Grad_Test_u''+Grad_Test_u)):Grad_Test2_u');
gf_model_set(md, 'add isotropic linearized elasticity brick', mim, 'u', 'clambda', 'cmu');
elseif (option == 2)
gf_model_set(md, 'add initialized data', 'E', [E]);
gf_model_set(md, 'add initialized data', 'nu', [nu]);
gf_model_set(md, 'add isotropic linearized elasticity brick pstrain', mim, 'u', 'E', 'nu');
elseif (option == 3)
gf_model_set(md, 'add initialized data', 'E', [E]);
gf_model_set(md, 'add initialized data', 'nu', [nu]);
gf_model_set(md, 'add isotropic linearized elasticity brick pstress', mim, 'u', 'E', 'nu');
end
if (incompressible)
gf_model_set(md, 'add fem variable', 'p', mfp);
gf_model_set(md, 'add linear incompressibility brick', mim, 'u', 'p');
% Not necessary to fix the pressure at a point ?
% gf_model_set(md, 'add initialized data', 'cpoints', [0.5, 0.5]);
% gf_model_set(md, 'add pointwise constraints with multipliers', 'p', 'cpoints');
end
gf_model_set(md, 'add initialized fem data', 'VolumicData', mf, F);
gf_model_set(md, 'add source term brick', mim, 'u', 'VolumicData');
gf_model_set(md, 'add initialized fem data', 'DirichletData', mf, Uexact);
if (dirichlet_version == 1)
gf_model_set(md, 'add Dirichlet condition with multipliers', mim, 'u', mf, GAMMAD, 'DirichletData');
else
gf_model_set(md, 'add initialized data', 'gamma0', [gamma0]);
expr = gf_model_get(md, 'Neumann term', 'u', GAMMAD);
gf_model_set(md, 'add Dirichlet condition with Nitsche method', mim, 'u', expr, 'gamma0', GAMMAD, theta, 'DirichletData');
end
tic;
gf_model_get(md, 'solve', 'noisy', 'max iter', 100);
U = gf_model_get(md, 'variable', 'u');
toc;
figure(1);
subplot(1+incompressible, 2, 1);
if (option == 1)
VM = gf_model_get(md, 'compute isotropic linearized Von Mises or Tresca', 'u', 'clambda', 'cmu', mfdu);
elseif (option == 2)
VM = gf_model_get(md, 'compute isotropic linearized Von Mises pstrain', 'u', 'E', 'nu', mfdu);
elseif (option == 3)
VM = gf_model_get(md, 'compute isotropic linearized Von Mises pstress', 'u', 'E', 'nu', mfdu);
end
gf_plot(mfdu, VM, 'deformed_mesh', 'on', 'deformation', U, 'deformation_mf', mf, 'refine', 4);
colorbar;title('approximated solution');
subplot(1+incompressible, 2, 2);
gf_plot(mf,U-Uexact,'mesh','on', 'norm', 'on');
colorbar; title('difference with exact solution');
if (incompressible)
P = gf_model_get(md, 'variable', 'p');
P = P - (P(1) - Pexact(1));
subplot(2, 2, 3);
gf_plot(mfp, P);
colorbar;title('approximated pressure');
subplot(2, 2, 4);
gf_plot(mfp, P-Pexact);
colorbar;title('difference with exact pressure');
end
disp(sprintf('H1 norm of error: %g', gf_compute(mf,U-Uexact,'H1 norm',mim)));
|