File: demo_elasticity.m

package info (click to toggle)
getfem%2B%2B 5.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 32,668 kB
  • ctags: 20,930
  • sloc: cpp: 110,660; ansic: 72,312; python: 6,064; sh: 3,608; perl: 1,710; makefile: 1,343
file content (155 lines) | stat: -rw-r--r-- 6,728 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
% Copyright (C) 2005-2016 Julien Pommier.
%
% This file is a part of GetFEM++
%
% GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
% under  the  terms  of the  GNU  Lesser General Public License as published
% by  the  Free Software Foundation;  either version 3 of the License,  or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program  is  distributed  in  the  hope  that it will be useful,  but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You  should  have received a copy of the GNU Lesser General Public License
% along  with  this program;  if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.

clear all;
% parameters
option = 2;            % 1 = use Lame coefficients brick
                       % 2 = use plane strain approximation brick
                       % 3 = use plane stress approximation brick
d = 2;                 % dimension (cannot be changed for the moment)
E = 1;                 % Young's modulus
nu = 0.3;              % Poisson ratio
cmu = E/(2*(1+nu));    % Lame coefficient
if (option == 3)
  clambda = 2*cmu*nu/(1-2*nu); % Lame coefficient, 3D and plane strain
else
  clambda = 2*cmu*nu/(1-nu);   % Lame coefficient, plane stress
end
dirichlet_version = 2; % 1 = With multipliers, 2 = Nitsche's method
theta = 1;             % Nitsche's method parameter theta
gamma0 = 0.001;        % Nitsche's method parameter gamma0 (gamma = gamma0*h)
incompressible = false;% Test with incompressibility or not
NX = 30;

% trace on;
gf_workspace('clear all');
m = gf_mesh('cartesian',[0:1/NX:1],[0:1/NX:1]);
%m=gf_mesh('import','structured','GT="GT_QK(2,1)";SIZES=[1,1];NOISED=1;NSUBDIV=[1,1];')


% create a mesh_fem of for a field of dimension d (i.e. a vector field)
mf = gf_mesh_fem(m,d);
% assign the Q2 fem to all convexes of the mesh_fem,
gf_mesh_fem_set(mf, 'fem', gf_fem('FEM_QK(2,2)'));

if (incompressible) 
  mfp = gf_mesh_fem(m,1);
  gf_mesh_fem_set(mfp, 'fem', gf_fem('FEM_QK(2,1)'));
end

mf_H = gf_mesh_fem(m,1);
gf_mesh_fem_set(mf_H, 'fem', gf_fem('FEM_QK(2,1)'));

mfdu=gf_mesh_fem(m,1); gf_mesh_fem_set(mfdu, 'fem', gf_fem('FEM_QK_DISCONTINUOUS(2,2)'));

% Integration which will be used
mim = gf_mesh_im(m, gf_integ('IM_GAUSS_PARALLELEPIPED(2,4)'));
%mim = gf_mesh_im(m, gf_integ('IM_STRUCTURED_COMPOSITE(IM_GAUSS_PARALLELEPIPED(2,5),4)'));
% detect the border of the mesh
border = gf_mesh_get(m,'outer faces');
% mark it as boundary #1
GAMMAD = 1;
gf_mesh_set(m, 'boundary', GAMMAD, border);
% gf_plot_mesh(m, 'regions', [1]); % the boundary edges appears in red
% pause(1);


% Polynomial exact solution
% Uexact = gf_mesh_fem_get(mf, 'eval', { '(x.^4).*(y.^2)', 'x.*y'});
% F = gf_mesh_fem_get(mf, 'eval', {sprintf('-(%g)*(12*(x.^2).*(y.^2)+1) - (%g)*(24*(x.^2).*(y.^2)+2*(x.^4)+1)', clambda, cmu), sprintf('-8*((%g)+(%g))*((x.^3).*y)', clambda, cmu)});

% Exact incompressible solution in terms of trigonometric functions
a = 8;
Uexact = gf_mesh_fem_get(mf, 'eval', { sprintf('sin((%g)*x)', a), sprintf('-(%g)*y.*cos((%g)*x)',a,a)});
F = gf_mesh_fem_get(mf, 'eval', {sprintf('(%g)*((%g)^2)*sin((%g)*x)', cmu, a, a), sprintf('-(%g)*((%g)^3)*y.*cos((%g)*x)', cmu, a, a)});
if (incompressible)
  Pexact = 100*gf_mesh_fem_get(mfp, 'eval', {sprintf('sin((%g)*(x-y))', a)});
  F = F + 100*gf_mesh_fem_get(mf, 'eval', {sprintf('(%g)*cos((%g)*(x-y))', a, a), sprintf('-(%g)*cos((%g)*(x-y))', a, a)});
end

md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mf);
if (option == 1)
  gf_model_set(md, 'add initialized data', 'cmu', [cmu]);
  gf_model_set(md, 'add initialized data', 'clambda', [clambda]);
  % gf_model_set(md, 'add linear generic assembly brick', mim, ...
  %       '(clambda*Div_Test_u*Id(qdim(u)) +
  %       cmu*(Grad_Test_u''+Grad_Test_u)):Grad_Test2_u');
  gf_model_set(md, 'add isotropic linearized elasticity brick', mim, 'u', 'clambda', 'cmu');
elseif (option == 2)
  gf_model_set(md, 'add initialized data', 'E', [E]);
  gf_model_set(md, 'add initialized data', 'nu', [nu]);
  gf_model_set(md, 'add isotropic linearized elasticity brick pstrain', mim, 'u', 'E', 'nu');
elseif (option == 3)
  gf_model_set(md, 'add initialized data', 'E', [E]);
  gf_model_set(md, 'add initialized data', 'nu', [nu]);
  gf_model_set(md, 'add isotropic linearized elasticity brick pstress', mim, 'u', 'E', 'nu');
end

if (incompressible)
  gf_model_set(md, 'add fem variable', 'p', mfp);
  gf_model_set(md, 'add linear incompressibility brick', mim, 'u', 'p');
  % Not necessary to fix the pressure at a point ?
  % gf_model_set(md, 'add initialized data', 'cpoints', [0.5, 0.5]);
  % gf_model_set(md, 'add pointwise constraints with multipliers', 'p', 'cpoints');
end
gf_model_set(md, 'add initialized fem data', 'VolumicData', mf, F);
gf_model_set(md, 'add source term brick', mim, 'u', 'VolumicData');
gf_model_set(md, 'add initialized fem data', 'DirichletData', mf, Uexact);
if (dirichlet_version == 1)
  gf_model_set(md, 'add Dirichlet condition with multipliers', mim, 'u', mf, GAMMAD, 'DirichletData');
else
  gf_model_set(md, 'add initialized data', 'gamma0', [gamma0]);
  expr = gf_model_get(md, 'Neumann term', 'u', GAMMAD);
  gf_model_set(md, 'add Dirichlet condition with Nitsche method', mim, 'u', expr, 'gamma0', GAMMAD, theta, 'DirichletData');
end

tic;    
gf_model_get(md, 'solve', 'noisy', 'max iter', 100);
U = gf_model_get(md, 'variable', 'u');
toc;

figure(1);
subplot(1+incompressible, 2, 1);
if (option == 1)
  VM = gf_model_get(md, 'compute isotropic linearized Von Mises or Tresca', 'u', 'clambda', 'cmu', mfdu);
elseif (option == 2)
  VM = gf_model_get(md, 'compute isotropic linearized Von Mises pstrain', 'u', 'E', 'nu', mfdu);
elseif (option == 3)
  VM = gf_model_get(md, 'compute isotropic linearized Von Mises pstress', 'u', 'E', 'nu', mfdu);
end
    
gf_plot(mfdu, VM, 'deformed_mesh', 'on', 'deformation', U, 'deformation_mf', mf, 'refine', 4); 
colorbar;title('approximated solution');

subplot(1+incompressible, 2, 2);
gf_plot(mf,U-Uexact,'mesh','on', 'norm', 'on'); 
colorbar; title('difference with exact solution');

if (incompressible)
  P = gf_model_get(md, 'variable', 'p');
  P = P - (P(1) - Pexact(1));
  subplot(2, 2, 3);
  gf_plot(mfp, P);
  colorbar;title('approximated pressure');
  subplot(2, 2, 4);
  gf_plot(mfp, P-Pexact);
  colorbar;title('difference with exact pressure');
end

disp(sprintf('H1 norm of error: %g', gf_compute(mf,U-Uexact,'H1 norm',mim)));