File: demo_fictitious_domains.m

package info (click to toggle)
getfem%2B%2B 5.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 32,668 kB
  • ctags: 20,930
  • sloc: cpp: 110,660; ansic: 72,312; python: 6,064; sh: 3,608; perl: 1,710; makefile: 1,343
file content (151 lines) | stat: -rw-r--r-- 5,077 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
% Copyright (C) 2006-2016 Yves Renard, Julien Pommier.
%
% This file is a part of GetFEM++
%
% GetFEM++  is  free software;  you  can  redistribute  it  and/or modify it
% under  the  terms  of the  GNU  Lesser General Public License as published
% by  the  Free Software Foundation;  either version 3 of the License,  or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program  is  distributed  in  the  hope  that it will be useful,  but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You  should  have received a copy of the GNU Lesser General Public License
% along  with  this program;  if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.


disp('This demo use levelset to impose (weakly) a Dirichlet condition on an');
disp('implicit boundary defined by the zero of the levelset');

%clear all;
gf_workspace('clear all');
NX=80;
ls_degree = 1;


m=gf_mesh('cartesian', -.5:(1/NX):.5, -.5:(1/NX):.5);
%m=gfMesh('triangles grid', -.5:(1/NX):.5, -.5:(1/NX):.5);
ls=gf_levelset(m, ls_degree);
%ls2=gf_LevelSet(m, ls_degree, 'with_secondary');

mf_ls=gfObject(gf_levelset_get(ls, 'mf'));
%mf_ls2=gfObject(gf_levelset_get(ls2, 'mf'));

P=get(mf_ls, 'basic dof nodes');
x = P(1,:); y = P(2,:);
%ULS = ((x + 0.25).^2 + (y - 0.4).^2) - 0.05^2;
%ULS = min(ULS, ((x - 0.25).^2 + (y - 0.4).^2) - 0.05^2);

ULS=1000*ones(1,numel(x));
rand('state',1);

if 0,
  for ix=1:1,
    for iy=1:1,
      xc = ((ix-1)/4) * 0.8 - 0.4;
      yc = ((iy-1)/4) * 0.8 - 0.4;
      if (mod(iy,2)==0),
	xc=xc + 0.05;
      else
	xc=xc - 0.05;
      end;
      R = 0.03 + 0.005*(iy-1);
      ULS = min(ULS, ((x - xc).^2 + (y - yc).^2) - R^2);
    end;
  end;
else
  for i=1:1,
    xc =0.1;% rand() - 0.5;
    yc =0;% rand() - 0.5;
    R=0.1;%R = rand() * 0.09 + 0.02;
    ULS = min(ULS, ((x - xc).^2 + (y - yc).^2) - R^2);
  end;
end;

gf_levelset_set(ls, 'values', ULS);

ULS2=1000*ones(1,numel(x));
ULS2s=1000*ones(1,numel(x));
for i=1:1,
  xc = 0; %rand() - 0.5;
  yc = 0.0; %rand() - 0.5;
  theta = pi/3; %pi*rand();
  n = [-sin(theta) cos(theta)];
  
  R = 0.1; %rand() * 0.09 + 0.02;
  ULS2 = min(ULS2, ((x-xc)*n(1) + (y-yc)*n(2)));
  ULS2s = min(ULS2s, ((x - xc).^2 + (y - yc).^2) - R^2);
  %ULS2s = min(ULS2s, (abs(y - yc)+abs(x-xc) - R));
end;

%gf_levelset_set(ls2, 'values', ULS2s, ULS2); %'-y-x+.2'); %, 'sqr(y-.2) - 0.04');

mls=gfMeshLevelSet(m);
set(mls, 'add', ls);
%set(mls, 'add', ls2);
set(mls, 'adapt');

mim_bound = gfMeshIm('levelset',mls,'boundary', gf_integ('IM_TRIANGLE(6)')); %, gf_integ('IM_QUAD(5)'));
mim = gfMeshIm('levelset',mls,'all', gf_integ('IM_TRIANGLE(6)'));
set(mim, 'integ', 4);

mfu0=gfMeshFem(m,2); set(mfu0, 'fem', gf_fem('FEM_QK(2,3)'));
mfdu=gfMeshFem(m,1); set(mfdu, 'fem', gf_fem('FEM_QK_DISCONTINUOUS(2,2)'));
mf_mult=gfMeshFem(m,2); set(mf_mult, 'fem', gf_fem('FEM_QK(2,1)'));

A=gf_asm('volumic','V()+=comp()',mim_bound)

%clf; gf_plot_mesh(get(mls,'cut mesh'));
%gf_plot_mesh(get(mls, 'cut_mesh'), 'curved', 'on');
%hold on; gf_plot(mf_ls, ULS);

dof_out = get(mfu0, 'dof from im', mim);
cv_out = get(mim, 'convex_index');
cv_in = setdiff(gf_mesh_get(m, 'cvid'), cv_out);

% mfu = gfMeshFem('partial', mfu0, dof_out, cv_in);


md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mfu0);
gf_model_set(md, 'add initialized data', 'lambda', [1]);
gf_model_set(md, 'add initialized data', 'mu', [1]);
gf_model_set(md, 'add isotropic linearized elasticity brick', ...
	     mim, 'u', 'lambda', 'mu');
gf_model_set(md, 'add initialized data', 'VolumicData', [0; 10]);
gf_model_set(md, 'add source term brick', mim, 'u', 'VolumicData');
gf_model_set(md, 'add multiplier', 'mult_dir', mf_mult, 'u');
gf_model_set(md, 'add Dirichlet condition with multipliers', ...
	     mim_bound, 'u', 'mult_dir', -1);

gf_model_get(md, 'solve');
U = gf_model_get(md, 'variable', 'u');


VM = gf_model_get(md, 'compute isotropic linearized Von Mises or Tresca', 'u', 'lambda', 'mu', mfdu);

gf_plot(mfdu, VM, 'deformed_mesh', 'on', 'deformation', U, ...
	'deformation_mf', mfu0, 'refine', 8, 'cvlst', cv_out); 
%gf_plot(mfu0, U, 'norm', 'on', 'deformed_mesh', 'on', 'deformation', U,...
% 	'deformation_mf', mfu0, 'refine', 8, 'cvlst', cv_out); 
hold on;
% set(mfu0,'qdim',1); Unorm=sqrt(U(1:2:end).^2 + U(2:2:end).^2);
% [h1,h2]=gf_plot(mfu0, Unorm,'contour',0.00001,'pcolor','off');
% set(h2{1},'LineWidth',2);
% set(h2{1},'Color','white');

[h1,h2]=gf_plot(mf_ls, gf_levelset_get(ls,'values'), 'contour', 0, 'pcolor','off');
set(h2{1},'LineWidth',1);
set(h2{1},'Color','blue');
%[h1,h1]=gf_plot(mf_ls2, gf_levelset_get(ls2,'values'), 'contour',0,'pcolor','off');

%h2=line([xc + R*n(2); xc - R*n(2)],[yc - R*n(1), yc + R*n(1)]);
%set(h2,'LineWidth',1);
%set(h2,'Color','blue');



hold off; caxis([0 10]);
gf_colormap('chouette');