1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
% Copyright (C) 2006-2016 Yves Renard, Julien Pommier.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
disp('This demo use levelset to impose (weakly) a Dirichlet condition on an');
disp('implicit boundary defined by the zero of the levelset');
%clear all;
gf_workspace('clear all');
NX=80;
ls_degree = 1;
m=gf_mesh('cartesian', -.5:(1/NX):.5, -.5:(1/NX):.5);
%m=gfMesh('triangles grid', -.5:(1/NX):.5, -.5:(1/NX):.5);
ls=gf_levelset(m, ls_degree);
%ls2=gf_LevelSet(m, ls_degree, 'with_secondary');
mf_ls=gfObject(gf_levelset_get(ls, 'mf'));
%mf_ls2=gfObject(gf_levelset_get(ls2, 'mf'));
P=get(mf_ls, 'basic dof nodes');
x = P(1,:); y = P(2,:);
%ULS = ((x + 0.25).^2 + (y - 0.4).^2) - 0.05^2;
%ULS = min(ULS, ((x - 0.25).^2 + (y - 0.4).^2) - 0.05^2);
ULS=1000*ones(1,numel(x));
rand('state',1);
if 0,
for ix=1:1,
for iy=1:1,
xc = ((ix-1)/4) * 0.8 - 0.4;
yc = ((iy-1)/4) * 0.8 - 0.4;
if (mod(iy,2)==0),
xc=xc + 0.05;
else
xc=xc - 0.05;
end;
R = 0.03 + 0.005*(iy-1);
ULS = min(ULS, ((x - xc).^2 + (y - yc).^2) - R^2);
end;
end;
else
for i=1:1,
xc =0.1;% rand() - 0.5;
yc =0;% rand() - 0.5;
R=0.1;%R = rand() * 0.09 + 0.02;
ULS = min(ULS, ((x - xc).^2 + (y - yc).^2) - R^2);
end;
end;
gf_levelset_set(ls, 'values', ULS);
ULS2=1000*ones(1,numel(x));
ULS2s=1000*ones(1,numel(x));
for i=1:1,
xc = 0; %rand() - 0.5;
yc = 0.0; %rand() - 0.5;
theta = pi/3; %pi*rand();
n = [-sin(theta) cos(theta)];
R = 0.1; %rand() * 0.09 + 0.02;
ULS2 = min(ULS2, ((x-xc)*n(1) + (y-yc)*n(2)));
ULS2s = min(ULS2s, ((x - xc).^2 + (y - yc).^2) - R^2);
%ULS2s = min(ULS2s, (abs(y - yc)+abs(x-xc) - R));
end;
%gf_levelset_set(ls2, 'values', ULS2s, ULS2); %'-y-x+.2'); %, 'sqr(y-.2) - 0.04');
mls=gfMeshLevelSet(m);
set(mls, 'add', ls);
%set(mls, 'add', ls2);
set(mls, 'adapt');
mim_bound = gfMeshIm('levelset',mls,'boundary', gf_integ('IM_TRIANGLE(6)')); %, gf_integ('IM_QUAD(5)'));
mim = gfMeshIm('levelset',mls,'all', gf_integ('IM_TRIANGLE(6)'));
set(mim, 'integ', 4);
mfu0=gfMeshFem(m,2); set(mfu0, 'fem', gf_fem('FEM_QK(2,3)'));
mfdu=gfMeshFem(m,1); set(mfdu, 'fem', gf_fem('FEM_QK_DISCONTINUOUS(2,2)'));
mf_mult=gfMeshFem(m,2); set(mf_mult, 'fem', gf_fem('FEM_QK(2,1)'));
A=gf_asm('volumic','V()+=comp()',mim_bound)
%clf; gf_plot_mesh(get(mls,'cut mesh'));
%gf_plot_mesh(get(mls, 'cut_mesh'), 'curved', 'on');
%hold on; gf_plot(mf_ls, ULS);
dof_out = get(mfu0, 'dof from im', mim);
cv_out = get(mim, 'convex_index');
cv_in = setdiff(gf_mesh_get(m, 'cvid'), cv_out);
% mfu = gfMeshFem('partial', mfu0, dof_out, cv_in);
md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mfu0);
gf_model_set(md, 'add initialized data', 'lambda', [1]);
gf_model_set(md, 'add initialized data', 'mu', [1]);
gf_model_set(md, 'add isotropic linearized elasticity brick', ...
mim, 'u', 'lambda', 'mu');
gf_model_set(md, 'add initialized data', 'VolumicData', [0; 10]);
gf_model_set(md, 'add source term brick', mim, 'u', 'VolumicData');
gf_model_set(md, 'add multiplier', 'mult_dir', mf_mult, 'u');
gf_model_set(md, 'add Dirichlet condition with multipliers', ...
mim_bound, 'u', 'mult_dir', -1);
gf_model_get(md, 'solve');
U = gf_model_get(md, 'variable', 'u');
VM = gf_model_get(md, 'compute isotropic linearized Von Mises or Tresca', 'u', 'lambda', 'mu', mfdu);
gf_plot(mfdu, VM, 'deformed_mesh', 'on', 'deformation', U, ...
'deformation_mf', mfu0, 'refine', 8, 'cvlst', cv_out);
%gf_plot(mfu0, U, 'norm', 'on', 'deformed_mesh', 'on', 'deformation', U,...
% 'deformation_mf', mfu0, 'refine', 8, 'cvlst', cv_out);
hold on;
% set(mfu0,'qdim',1); Unorm=sqrt(U(1:2:end).^2 + U(2:2:end).^2);
% [h1,h2]=gf_plot(mfu0, Unorm,'contour',0.00001,'pcolor','off');
% set(h2{1},'LineWidth',2);
% set(h2{1},'Color','white');
[h1,h2]=gf_plot(mf_ls, gf_levelset_get(ls,'values'), 'contour', 0, 'pcolor','off');
set(h2{1},'LineWidth',1);
set(h2{1},'Color','blue');
%[h1,h1]=gf_plot(mf_ls2, gf_levelset_get(ls2,'values'), 'contour',0,'pcolor','off');
%h2=line([xc + R*n(2); xc - R*n(2)],[yc - R*n(1), yc + R*n(1)]);
%set(h2,'LineWidth',1);
%set(h2,'Color','blue');
hold off; caxis([0 10]);
gf_colormap('chouette');
|