1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
% Copyright (C) 2006-2016 Yves Renard, Julien Pommier.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
disp('This demo use levelset to impose (weakly) a Dirichlet condition on a part of an ');
disp('implicit boundary defined by the zero of the levelset and a Neumann condition on ');
disp('the remaining part of that boundary. A Poisson problem');
clear all;
gf_workspace('clear all');
NX= 10
N = 3
ls_degree = 1
R = 0.4;
if (N == 3)
m=gf_mesh('cartesian', -.5:(1/NX):.5, -.5:(1/NX):.5, -.5:(1/NX):.5);
%m=gf_Mesh('regular simplices', -.5:(1/NX):.5, -.5:(1/NX):.5, -.5:(1/NX):.5);
mfu0=gfMeshFem(m,1);
mf_mult=gfMeshFem(m,1);
set(mfu0, 'fem', gf_fem('FEM_QK(3,1)'))
%set(mfu0, 'fem', gf_fem('FEM_PK(3,1)'));
set(mf_mult, 'fem', gf_fem('FEM_QK(3,1)'))
%set(mf_mult, 'fem', gf_fem('FEM_PK(3,0)'));
adapt_im = 'IM_TETRAHEDRON(6)';
elseif (N == 2)
%m=gf_mesh('cartesian', -.5:(1/NX):.5, -.5:(1/NX):.5);
m=gfMesh('triangles grid', -.5:(1/NX):.5, -.5:(1/NX):.5);
mfu0=gfMeshFem(m,1);
mf_mult=gfMeshFem(m,1);
set(mfu0, 'fem', gf_fem('FEM_PK(2,3)'));
set(mf_mult, 'fem', gf_fem('FEM_PK(2,1)'));
adapt_im = 'IM_TRIANGLE(6)'
else
error('Wrong dimension');
end
ls=gf_levelset(m, ls_degree);
ls2s=gf_levelset(m, ls_degree, 'with_secondary');
ls2=gf_levelset(m, ls_degree, 'with_secondary');
mf_ls=gfObject(gf_levelset_get(ls, 'mf'));
mf_ls2=gfObject(gf_levelset_get(ls2, 'mf'));
P=get(mf_ls, 'basic dof nodes');
x = P(1,:); y = P(2,:);
if (N == 3)
z = P(3,:);
else
z = 0 * x;
end
ULS=1000*ones(1,numel(x));
ULS2=1000*ones(1,numel(x));
ULS = min(ULS,((x.^2 + y.^2 + z.^2).^1.5 - R^3));
%ULS2 = min(ULS,x);
if (N == 3)
ULS2 = min(ULS2,z);%ULS2=-ULS2;
else
ULS2 = min(ULS2,y);%ULS2=-ULS2;
end
gf_levelset_set(ls, 'values', ULS);
gf_levelset_set(ls2, 'values', ULS, ULS2);
%gf_levelset_set(lss, 'values', ULS);
gf_levelset_set(ls2s, 'values', ULS, -ULS2);
mls=gfMeshLevelSet(m);
set(mls, 'add', ls);
set(mls, 'add',ls2);
set(mls, 'adapt');
mls2=gfMeshLevelSet(m);
set(mls2, 'add', ls);
set(mls2, 'add',ls2s);
set(mls2, 'adapt');
mim_bounddown = gfMeshIm('levelset',mls,'boundary(b)', gf_integ(adapt_im));
%mim_bound2 = gfMeshIm('levelset',mls,'boundary(a)', gf_integ(adapt_im));
mim_boundup = gfMeshIm('levelset',mls2,'boundary(b)', gf_integ(adapt_im));
mim_int = gfMeshIm('levelset', mls, 'inside(a)', gf_integ(adapt_im));
set(mim_int, 'integ', 4);
% Some verifications
A1=gf_asm('volumic','V()+=comp()',mim_bounddown);
%A2=gf_asm('volumic','V()+=comp()',mim_bound2);
A2=gf_asm('volumic','V()+=comp()',mim_boundup);
V =gf_asm('volumic','V()+=comp()',mim_int);
if (N == 2)
disp(sprintf('length : %g should be %g', A1, pi*R));
disp(sprintf('length : %g should be %g', A2, 2*pi*R));
disp(sprintf('area : %g should be %g', V, pi*R^2));
else
disp(sprintf('area : %g should be %g', A1, 4*pi*R^2/2));
disp(sprintf('area : %g should be %g', A2, 4*pi*R^2));
disp(sprintf('volume : %g should be %g', V, 4*pi*R^3/3.));
end
% partial mesh fem
dof_out = get(mfu0, 'dof from im', mim_int);
cv_out = get(mim_int, 'convex_index');
cv_in = setdiff(gf_mesh_get(m, 'cvid'), cv_out);
mfu = gfMeshFem('partial', mfu0, dof_out, cv_in);
% data
if (N == 2)
Volumic_data = gf_mesh_fem_get(mfu0, 'eval', { '45*sqrt(x.^2+y.^2)' });
surface_data = gf_mesh_fem_get(mfu0, 'eval', { '-15*(x.^2+y.^2)' });
Sol_U = gf_mesh_fem_get(mfu0, 'eval', { sprintf('5*((%g)^3-(x.^2+y.^2).^1.5)', R) });
else
Volumic_data = gf_mesh_fem_get(mfu0, 'eval', { '60*sqrt(x.^2+y.^2+z.^2)' });
surface_data = gf_mesh_fem_get(mfu0, 'eval', { '-15*(x.^2+y.^2+z.^2)' });
Sol_U = gf_mesh_fem_get(mfu0, 'eval', { sprintf('5*((%g)^3-(x.^2+y.^2+z.^2).^1.5)', R) });
end
% getfem model
md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mfu);
gf_model_set(md, 'add Laplacian brick', mim_int, 'u');
gf_model_set(md, 'add initialized fem data', 'VolumicData', mfu0, Volumic_data);
gf_model_set(md, 'add source term brick', mim_int, 'u', 'VolumicData');
if 0,
B2=gf_asm('mass matrix', mim_boundup, mfu0, mfu);
Rh=gf_spmat_get(B2, 'tmult', surface_data);
gf_model_set(md, 'add explicit rhs', 'u', Rh);
else
gf_model_set(md, 'add initialized fem data', 'SurfaceData', mfu0, surface_data);
gf_model_set(md, 'add source term brick', mim_boundup, 'u', 'SurfaceData');
% gf_model_set(md, 'add initialized fem data', 'SurfaceData', mfu0, surface_data);
% gf_model_set(md, 'add source term brick', mim_bound2, 'u', 'SurfaceData');
% gf_model_set(md, 'add initialized fem data', 'SurfaceData2', mfu0, -surface_data);
% gf_model_set(md, 'add source term brick', mim_bounddown, 'u', 'SurfaceData2');
end;
%range bases
BRBB=gf_asm('mass matrix', mim_bounddown, mf_mult, mf_mult);
gf_mesh_fem_set(mf_mult,'reduce meshfem', BRBB);
gf_model_set(md, 'add fem variable', 'Lambda', mf_mult);
B=gf_asm('mass matrix', mim_bounddown, mfu, mf_mult);
gf_model_set(md, 'add explicit matrix', 'u', 'Lambda', B, 1);
% gf_model_set(md, 'add multiplier', 'Lambda', mf_mult, 'u');
% gf_model_set(md, 'add Dirichlet condition with multipliers', ...
% mim_bounddown, 'u', 'Lambda', -1);
gf_model_get(md, 'solve');
U = gf_model_get(md, 'variable', 'u');
Lambda = gf_model_get(md, 'variable', 'Lambda');
% Comparison with the exaxt solution
U0=gf_compute(mfu,U,'interpolate on',mfu0);
ERRL2 = gf_compute(mfu0, U0, 'L2 dist', mim_int, mfu0, Sol_U);
L2_Error=100*gf_compute(mfu, U, 'L2 dist', mim_int, mfu0, Sol_U)/gf_compute(mfu0, Sol_U,'L2 norm',mim_int);
ERRH1 = gf_compute(mfu0, U0, 'H1 semi dist', mim_int, mfu0, Sol_U);
H1_Error=100*gf_compute(mfu, U, 'H1 semi dist', mim_int, mfu0, Sol_U)/gf_compute(mfu0,Sol_U,'H1 norm',mim_int);
%Compute error on the Multiplier
map_Error=(abs(U0-Sol_U));
%LambdaE = gf_mesh_fem_get(mf_mult, 'eval', { '-15*(x.^2+y.^2+z.^2)' });
BA=gf_asm('mass matrix', mim_bounddown, mf_mult, mf_mult);
BLS=gf_asm('lsneuman matrix', mim_bounddown, mfu0, mf_mult, ls);
KA=gf_asm('nlsgrad matrix', mim_bounddown, mfu0, mfu0, ls);
%ERRL_mult= (Lambda*gf_spmat_get(BA, 'mult',Lambda)+ U0*gf_spmat_get(KA, 'mult',U0) + 2*Lambda*gf_spmat_get(BLS, 'mult',U0))/(U0*gf_spmat_get(KA, 'mult',U0))
ERRL2_mult= (Lambda*gf_spmat_get(BA, 'mult',Lambda)+ Sol_U*gf_spmat_get(KA, 'mult',Sol_U) + 2*Lambda*gf_spmat_get(BLS, 'mult',Sol_U))/(Sol_U*gf_spmat_get(KA, 'mult',Sol_U));
L2_error_mult=100* sqrt(abs(ERRL2_mult));
disp(sprintf('L2 norm %g\n H1 error = %g\n L2 norm mult=%g', L2_Error, H1_Error, L2_error_mult));
if (N == 2)
figure(1);
gf_plot(mfu, U, 'mesh','on', 'refine', 2);
xlabel('x'); ylabel('y');
title('Displasment solution');
figure(2);
gf_plot(mfu0, map_Error, 'mesh','on', 'refine', 2);
xlabel('x'); ylabel('y');
title('Map Error in displacement');
else
% gf_plot(mfu, U, 'mesh','on', 'cvlst', gf_mesh_get(m, 'outer faces'), 'refine', 2);
%Plot displasment
figure(1);
sl=gf_slice({'boundary',{'intersection',{'ball', -1,[0;0;0], R},{'planar',1,[0;0;0],[0;0;1]}}},mfu,3);
%sl=gf_slice({'boundary',{'intersection',{'ball',-1,[0;0;0],R}}},mfu,1);
Usl=gf_compute(mfu,U,'interpolate on', sl);
gf_plot_slice(sl,'mesh_faces','on','mesh','off','data',Usl,'mesh_slice_edges','on');
xlabel('x'); ylabel('y'); zlabel('z');
title('Displasment solution');
%plot exact solution
figure(2);
sl=gf_slice({'boundary',{'intersection',{'ball', -1,[0;0;0], R},{'planar',1,[0;0;0],[0;0;1]}}},mfu0,3);
%sl=gf_slice({'boundary',{'intersection',{'ball',-1,[0;0;0],R}}},mfu0,10);
Usl=gf_compute(mfu0,Sol_U,'interpolate on', sl);
gf_plot_slice(sl,'mesh_faces','on','mesh','off','data',Usl,'mesh_slice_edges','on');
xlabel('x'); ylabel('y'); zlabel('z');
title('Exact solution');
%Plot map eroor on u
figure(3);
sl=gf_slice({'boundary',{'intersection',{'ball', -1,[0;0;0], R},{'planar',-1,[0;0;0],[0;0;1]}}},mfu0,10);
%sl=gf_slice({'boundary',{'intersection',{'ball',-1,[0;0;0],R}}},mfu0,10);
Usl=gf_compute(mfu0,map_Error,'interpolate on', sl);
gf_plot_slice(sl,'mesh_faces','on','mesh','off','data',Usl,'mesh_slice_edges','on');
xlabel('x'); ylabel('y'); zlabel('z');
title('Map Error in displacement');
%Plot multiplier
figure(4);
%sl=gf_slice({'boundary',{'intersection',{'ball', 0,[0;0;0], R},{'planar',-1,[0;0;0],[0;0;1]}}},mf_mult,10);
sl=gf_slice({'boundary',{'intersection',{'ball',0,[0;0;0],R}}},mf_mult,3);
Usl=gf_compute(mf_mult, Lambda,'interpolate on', sl);
gf_plot_slice(sl,'mesh_faces','on','mesh','off','data',Usl,'mesh_slice_edges','on');
xlabel('x'); ylabel('y'); zlabel('z');
title('Multiplier solution');
end
gf_colormap('chouette');
|