1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
% Copyright (C) 2015-2016 Yves Renard.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
% A Poisson problem solved with a Discontinuous Galerkin method (or
% interior penalty method). See for instance
% "Unified analysis of discontinuous Galerkin methods for elliptic
% problems", D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, SIAM J.
% Numer. Anal. vol. 39:5, pp 1749-1779, 2002.
% Options for prescribing the Dirichlet condition
dirichlet_version = 3; % 0 = simplification, 1 = with multipliers,
% 2 = penalization, 3 = Nitsche's method
theta = 1; % Nitsche's method parameter theta
gamma0 = 0.001; % Nitsche's method parameter gamma0 (gamma = gamma0*h)
r = 1e8; % Penalization parameter for the Dirichlet condition
draw = true;
quadrangles = true;
NX = 20;
K = 2; % Degree of the discontinuous finite element method
interior_penalty_factor = 300*NX; % Parameter of the interior penalty term
verify_neighbour_computation = true;
asize = size(who('automatic_var654'));
if (asize(1)) draw = false; end;
% trace on;
gf_workspace('clear all');
if (quadrangles)
m = gf_mesh('cartesian',[0:1/NX:1],[0:1/NX:1]);
else
m=gf_mesh('import','structured',sprintf('GT="GT_PK(2,1)";SIZES=[1,1];NOISED=0;NSUBDIV=[%d,%d];', NX, NX));
end
% Create a mesh_fem of for a field of dimension 1 (i.e. a scalar field)
mf = gf_mesh_fem(m,1);
% Assign the QK or PK fem to all convexes of the mesh_fem, and define an
% integration method
if (quadrangles)
gf_mesh_fem_set(mf,'fem',gf_fem(sprintf('FEM_QK_DISCONTINUOUS(2,%d)', K)));
mim = gf_mesh_im(m, gf_integ('IM_GAUSS_PARALLELEPIPED(2,6)'));
else
gf_mesh_fem_set(mf,'fem',gf_fem(sprintf('FEM_PK_DISCONTINUOUS(2,%d)', K)));
mim = gf_mesh_im(m, gf_integ('IM_TRIANGLE(6)'));
end
% Detect the border of the mesh
border = gf_mesh_get(m,'outer faces');
GAMMAD=1;
gf_mesh_set(m, 'region', GAMMAD, border);
% Inner edges for the interior penalty terms
in_faces = gf_mesh_get(m,'inner faces');
INNER_FACES=2;
gf_mesh_set(m, 'region', INNER_FACES, in_faces);
if (verify_neighbour_computation)
TEST_FACES=3;
adjf = gf_mesh_get(m, 'adjacent face', 43, 1);
if (size(adjf,2) == 0)
error('Adjacent face not found');
end
gf_mesh_set(m, 'region', TEST_FACES, [[43; 1], adjf]);
if (draw)
figure(2);
gf_plot_mesh(m, 'regions', [TEST_FACES], 'convexes', 'on');
figure(1)
end
end
% Mesh plot
if (draw)
subplot(2,2,1); gf_plot_mesh(m, 'regions', [GAMMAD]); % the boundary edges appear in red
subplot(2,2,2); gf_plot_mesh(m, 'regions', [INNER_FACES]); % inner edges appear in red
pause(1);
end
% Interpolate the exact solution
% Uexact = gf_mesh_fem_get(mf, 'eval', { '10*y.*(y-1).*x.*(x-1)+10*x.^5' });
Uexact = gf_mesh_fem_get(mf, 'eval', { 'x.*sin(2*pi*x).*sin(2*pi*y)' });
% Opposite of its laplacian
% F = gf_mesh_fem_get(mf, 'eval', { '-(20*(x.^2+y.^2)-20*x-20*y+200*x.^3)' });
F = gf_mesh_fem_get(mf, 'eval', { '4*pi*(2*pi*x.*sin(2*pi*x) - cos(2*pi*x)).*sin(2*pi*y)' });
md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mf);
gf_model_set(md, 'add linear generic assembly brick', mim, 'Grad_u.Grad_Test_u');
% gf_model_set(md, 'add Laplacian brick', mim, 'u');
gf_model_set(md, 'add initialized fem data', 'VolumicData', mf, F);
gf_model_set(md, 'add source term brick', mim, 'u', 'VolumicData');
gf_model_set(md, 'add initialized fem data', 'DirichletData', mf, Uexact);
switch (dirichlet_version)
case 0,
gf_model_set(md, 'add Dirichlet condition with simplification', 'u', GAMMAD, 'DirichletData');
case 1,
gf_model_set(md, 'add Dirichlet condition with multipliers', mim, 'u', mf, GAMMAD, 'DirichletData');
case 2,
gf_model_set(md, 'add Dirichlet condition with penalization', mim, 'u', r, GAMMAD, 'DirichletData');
case 3,
gf_model_set(md, 'add initialized data', 'gamma0', [gamma0]);
expr = gf_model_get(md, 'Neumann term', 'u', GAMMAD);
gf_model_set(md, 'add Dirichlet condition with Nitsche method', mim, 'u', expr, 'gamma0', GAMMAD, theta, 'DirichletData');
end
% Interior penalty terms
gf_model_set(md, 'add initialized data', 'alpha', [interior_penalty_factor]);
jump = '((u-Interpolate(u,neighbour_elt))*Normal)';
test_jump = '((Test_u-Interpolate(Test_u,neighbour_elt))*Normal)';
grad_mean = '((Grad_u+Interpolate(Grad_u,neighbour_elt))*0.5)';
grad_test_mean = '((Grad_Test_u+Interpolate(Grad_Test_u,neighbour_elt))*0.5)';
% gf_model_set(md, 'add linear generic assembly brick', mim, sprintf('-((%s).(%s))', grad_mean, test_jump), INNER_FACES);
% gf_model_set(md, 'add linear generic assembly brick', mim, sprintf('-((%s).(%s))', jump, grad_test_mean), INNER_FACES);
% gf_model_set(md, 'add linear generic assembly brick', mim, sprintf('alpha*((%s).(%s))', jump, test_jump), INNER_FACES);
gf_model_set(md, 'add linear generic assembly brick', mim, sprintf('-((%s).(%s))-((%s).(%s))+alpha*((%s).(%s))', grad_mean, test_jump, jump, grad_test_mean, jump, test_jump), INNER_FACES);
gf_model_get(md, 'solve', 'noisy');
U = gf_model_get(md, 'variable', 'u');
if (draw)
subplot(2,2,3); gf_plot(mf,U,'mesh','off');
colorbar; title('computed solution');
subplot(2,2,4); gf_plot(mf,Uexact-U,'mesh','on');
colorbar;title('difference with exact solution');
end
err = gf_compute(mf, Uexact-U, 'H1 norm', mim);
disp(sprintf('H1 norm of error: %g', err));
if (verify_neighbour_computation)
A=gf_asm('generic', mim, 1, 'u*Test_u*(Normal.Normal)', TEST_FACES, md);
B=gf_asm('generic', mim, 1, '-Interpolate(u,neighbour_elt)*Interpolate(Test_u,neighbour_elt)*(Interpolate(Normal,neighbour_elt).Normal)', TEST_FACES, md);
err_v = norm(A-B);
A=gf_asm('generic', mim, 1, '(Grad_u.Normal)*(Grad_Test_u.Normal)', TEST_FACES, md);
B=gf_asm('generic', mim, 1, '(Interpolate(Grad_u,neighbour_elt).Normal)*(Interpolate(Grad_Test_u,neighbour_elt).Normal)', TEST_FACES, md);
err_v = err_v + norm(A-B);
if (err_v > 1E-13)
error('Test on neighbour element computation: error to big');
end
end
if (err > 2E-4)
error('Laplacian test: error to big');
end
|