1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
% Copyright (C) 2005-2016 Julien Pommier.
%
% This file is a part of GetFEM++
%
% GetFEM++ is free software; you can redistribute it and/or modify it
% under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation; either version 3 of the License, or
% (at your option) any later version along with the GCC Runtime Library
% Exception either version 3.1 or (at your option) any later version.
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
% License and GCC Runtime Library Exception for more details.
% You should have received a copy of the GNU Lesser General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
gf_workspace('clear all');
gf_util('trace level', 1);
% set a custom colormap
r=[0.7 .7 .7]; l = r(end,:); s=63; s1=20; s2=25; s3=48;s4=55;
for i=1:s, c1 = max(min((i-s1)/(s2-s1),1),0);c2 = max(min((i-s3)/(s4-s3),1),0); r(end+1,:)=(1-c2)*((1-c1)*l + c1*[1 0 0]) + c2*[1 .8 .2]; end;
colormap(r);
dirichlet_version = 2; % 1 = simplification, 2 = penalisation
drawing = true;
test_tangent_matrix = false;
incompressible = true;
% lawname = 'Ciarlet Geymonat';
% params = [1;1;0.25];
lawname = 'SaintVenant Kirchhoff';
params = [1;1];
if (incompressible)
lawname = 'Incompressible Mooney Rivlin';
params = [1;1];
end
N1=2; N2=4; h=20;
m=gf_mesh('cartesian',(0:N1)/N1 - .5, (0:N2)/N2*h, ((0:N1)/N1 - .5)*3);
mfu=gf_mesh_fem(m,3); % mesh-fem supporting a 3D-vector field
% the mesh_im stores the integration methods for each tetrahedron
mim=gf_mesh_im(m,gf_Integ('IM_GAUSS_PARALLELEPIPED(3,4)'));
% we choose a P2 fem for the main unknown
gf_mesh_fem_set(mfu, 'fem',gf_Fem('FEM_QK(3,2)'));
mfdu=gf_mesh_fem(m,1);
% the material is homogeneous, hence we use a P0 fem for the data
if (dirichlet_version == 1)
mfd=mfu;
else
mfd=gf_mesh_fem(m,1); % scalar mesh_fem
gf_mesh_fem_set(mfd,'fem',gf_fem('FEM_QK(3,1)'));
end
% the P2 fem is not derivable across elements, hence we use a discontinuous
% fem for the derivative of U.
gf_mesh_fem_set(mfdu,'fem',gf_fem('FEM_QK_DISCONTINUOUS(3,2)'));
m_char=gf_mesh_get(m, 'char');
mfu_char=gf_mesh_fem_get(mfu, 'char');
mfdu_char=gf_mesh_fem_get(mfdu, 'char');
% display some informations about the mesh
disp(sprintf('nbcvs=%d, nbpts=%d, nbdof=%d',gf_mesh_get(m,'nbcvs'),...
gf_mesh_get(m,'nbpts'),gf_mesh_fem_get(mfu,'nbdof')));
P=gf_mesh_get(m,'pts'); % get list of mesh points coordinates
%pidtop=find(abs(P(2,:)-13)<1e-6); % find those on top of the object
%pidbot=find(abs(P(2,:)+10)<1e-6); % find those on the bottom
pidtop=find(abs(P(2,:)-h)<1e-6); % find those on top of the object
pidbot=find(abs(P(2,:)-0)<1e-6); % find those on the bottom
% build the list of faces from the list of points
ftop=gf_mesh_get(m, 'faces from pid', pidtop);
fbot=gf_mesh_get(m, 'faces from pid', pidbot);
% assign boundary numbers
gf_mesh_set(m,'boundary', 1, ftop);
gf_mesh_set(m,'boundary', 2, fbot);
gf_mesh_set(m,'boundary', 3, [ftop fbot]);
md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mfu);
gf_model_set(md,'add initialized data','params', params);
% gf_model_set(md, 'add nonlinear elasticity brick', mim, 'u', lawname, 'params');
gf_model_set(md, 'add finite strain elasticity brick', mim, lawname, 'u', 'params');
% gf_model_set(md, 'add nonlinear generic assembly brick', mim, ...
% 'sqr(Trace(Green_Lagrangian(Id(meshdim)+Grad_u)))/8 + Norm_sqr(Green_Lagrangian(Id(meshdim)+Grad_u))/4');
% gf_model_set(md, 'add nonlinear generic assembly brick', mim, ...
% '((Id(meshdim)+Grad_u)*(params(1)*Trace(Green_Lagrangian(Id(meshdim)+Grad_u))*Id(meshdim)+2*params(2)*Green_Lagrangian(Id(meshdim)+Grad_u))):Grad_Test_u');
% gf_model_set(md, 'add nonlinear generic assembly brick', mim, 'Saint_Venant_Kirchhoff_potential(Grad_u,params)');
% gf_model_set(md, 'add nonlinear generic assembly brick', mim, ...
% '((Id(meshdim)+Grad_u)*(Ciarlet_Geymonat_sigma(Grad_u,params))):Grad_Test_u');
% gf_model_set(md, 'add nonlinear generic assembly brick', mim, ...
% 'Ciarlet_Geymonat_potential(Grad_u,params)');
% gf_model_set(md, 'add nonlinear generic assembly brick', mim, ...
% '((Id(meshdim)+Grad_u)*(Incompressible_Mooney_Rivlin_sigma(Grad_u,params))):Grad_Test_u');
% gf_model_set(md, 'add nonlinear generic assembly brick', mim, ...
% 'Incompressible_Mooney_Rivlin_potential(Grad_u,params)');
% gf_model_set(md, 'add nonlinear generic assembly brick', mim, ...
% '((Id(meshdim)+Grad_u)*(Saint_Venant_Kirchhoff_sigma(Grad_u,params))):Grad_Test_u');
if (incompressible || true)
mfp = gf_Mesh_Fem(m,1);
gf_mesh_fem_set(mfp, 'classical discontinuous fem', 1);
gf_model_set(md, 'add fem variable', 'p', mfp);
% gf_model_set(md, 'add nonlinear incompressibility brick', mim, 'u', 'p');
gf_model_set(md, 'add finite strain incompressibility brick', mim, 'u', 'p');
% gf_model_set(md, 'add nonlinear generic assembly brick', mim, ...
% 'p*(1-Det(Id(meshdim)+Grad_u))');
% gf_model_set(md, 'add nonlinear generic assembly brick', mim, ...
% '-p*Det(Id(meshdim)+Grad_u)*(Inv(Id(meshdim)+Grad_u))'':Grad_Test_u + Test_p*(1-Det(Id(meshdim)+Grad_u))');
end
if (dirichlet_version == 1)
gf_model_set(md, 'add fem data', 'DirichletData', mfu);
gf_model_set(md, 'add Dirichlet condition with simplification', 'u', 3, 'DirichletData');
else
gf_model_set(md, 'add fem data', 'DirichletData', mfd, 3);
gf_model_set(md, 'add Dirichlet condition with penalization', mim, 'u', 1e4, 3, 'DirichletData');
end
VM=zeros(1,gf_mesh_fem_get(mfdu, 'nbdof'));
reload = 0;
if (reload == 0),
UU=[];
VVM=[];
nbstep=40;
else
load 'demo_nonlinear_elasticity_U.mat';
nb_step = size(UU,1);
end;
P=gf_mesh_fem_get(mfd, 'basic dof_nodes');
r = sqrt(P(1 ,:).^2 + P(3, :).^2);
theta = atan2(P(3,:),P(1,:));
for step=1:nbstep,
w = 3*step/nbstep;
%set(b2, 'param', 'R', [0;0;0]);
if (~reload)
dtheta = pi;
dtheta2 = pi/2;
if (dirichlet_version == 1)
R=zeros(gf_mesh_fem_get(mfd, 'nbdof'), 1);
else
R=zeros(3, gf_mesh_fem_get(mfd, 'nbdof'));
end
i_top = gf_mesh_fem_get(mfd, 'basic dof on region', 1);
i_bot = gf_mesh_fem_get(mfd, 'basic dof on region', 2);
dd = max(P(1,i_top)*sin(w*dtheta));
if (w < 1),
RT1 = axrot_matrix([0 h*.75 0], [0 h*.75 1], w*dtheta);
RT2 = axrot_matrix([0 0 0], [0 1 0], sqrt(w)*dtheta2);
RB1 = axrot_matrix([0 h*.25 0], [0 h*.25 1], -w*dtheta);
RB2 = RT2';
elseif (w < 2),
RT1 = axrot_matrix([0 h*.75 0], [0 h*.75 1], (2-w)*dtheta);
RT2 = axrot_matrix([0 0 0], [0 1 0], w*dtheta2);
RB1 = axrot_matrix([0 h*.25 0], [0 h*.25 1], -(2-w)*dtheta);
RB2 = RT2';
else
RT1 = axrot_matrix([0 h*.75 0], [0 h*.75 1], 0);
RT2 = axrot_matrix([0 0 0], [0 1 0], (3-w)*2*dtheta2);
RB1 = axrot_matrix([0 h*.25 0], [0 h*.25 1], 0);
RB2 = RT2';
end;
if (dirichlet_version == 1)
for i=i_top,
ro = RT1*RT2*[P(:,i);1];
R(i) = ro(1+mod(i-1,3)) - P(1+mod(i-1,3),i);
end
for i=i_bot,
ro = RB1*RB2*[P(:,i);1];
R(i) = ro(1+mod(i-1,3)) - P(1+mod(i-1,3),i);
end
else
for i=i_top,
ro = RT1*RT2*[P(:,i);1];
R(:, i) = ro(1:3) - P(:,i);
end
for i=i_bot,
ro = RB1*RB2*[P(:,i);1];
R(:, i) = ro(1:3) - P(:,i);
end
end
gf_model_set(md, 'variable', 'DirichletData', R);
gf_model_get(md, 'solve', 'very noisy', 'max_iter', 100, 'max_res', 1e-5, 'lsearch', 'simplest');
if (test_tangent_matrix)
gf_model_get(md, 'test tangent matrix', 1E-8, 10, 0.0001);
end;
U = gf_model_get(md, 'variable', 'u');
% VM0 = gf_model_get(md, 'compute Von Mises or Tresca', 'u', lawname, 'params', mfdu);
% sigma = gf_model_get(md, 'compute second Piola Kirchhoff tensor', 'u', lawname, 'params', mfdu);
% Direct interpolation of the Von Mises stress
% VM = gf_model_get(md, 'interpolation', '(sqrt(3/2)/Det(Id(meshdim)+Grad_u))*Norm((Id(meshdim)+Grad_u)*Saint_Venant_Kirchhoff_sigma(Grad_u,params)*(Id(meshdim)+Grad_u'') - Id(meshdim)*Trace((Id(meshdim)+Grad_u)*Saint_Venant_Kirchhoff_sigma(Grad_u,params)*(Id(meshdim)+Grad_u''))/meshdim)', mfdu);
% VM = gf_model_get(md, 'interpolation', '(sqrt(3/2)/Det(Id(meshdim)+Grad_u))*Norm(Deviator((Id(meshdim)+Grad_u)*Saint_Venant_Kirchhoff_sigma(Grad_u,params)*(Id(meshdim)+Grad_u'')))', mfdu);
% VM = gf_model_get(md, 'interpolation', 'sqrt(3/2)*Norm(Deviator(Cauchy_stress_from_PK2(Saint_Venant_Kirchhoff_sigma(Grad_u,params),Grad_u)))', mfdu);
VM = gf_model_get(md, 'compute finite strain elasticity Von Mises', lawname, 'u', 'params', mfdu);
% norm(VM-VM0)
UU = [UU;U];
VVM = [VVM;VM];
save demo_nonlinear_elasticity_U.mat UU VVM m_char mfu_char mfdu_char;
else
U=UU(step,:);
VM=VVM(step,:);
end;
disp(sprintf('step %d/%d : |U| = %g',step,nbstep,norm(U)));
if (drawing)
gf_plot(mfdu,VM,'mesh','off', 'cvlst',gf_mesh_get(mfdu,'outer faces'), 'deformation',U,'deformation_mf',mfu,'deformation_scale', 1, 'refine', 8); colorbar;
axis([-3 6 0 20 -2 2]); caxis([0 .3]);
view(30+20*w, 23+30*w);
campos([50 -30 80]);
camva(8);
camup
camlight;
axis off;
pause(1);
% save a picture..
%print(gcf, '-dpng', '-r150', sprintf('torsion%03d',step));
end
end;
disp('end of computations, you can now replay the animation with')
disp('demo_nonlinear_elasticity_anim')
|